મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x-3y=-28
બીજા સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુનો 2 સાથે ગુણાકાર કરો.
4x+3y=25,2x-3y=-28
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+3y=25
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-3y+25
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-3y+25\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{3}{4}y+\frac{25}{4}
-3y+25 ને \frac{1}{4} વાર ગુણાકાર કરો.
2\left(-\frac{3}{4}y+\frac{25}{4}\right)-3y=-28
અન્ય સમીકરણ, 2x-3y=-28 માં x માટે \frac{-3y+25}{4} નો પ્રતિસ્થાપન કરો.
-\frac{3}{2}y+\frac{25}{2}-3y=-28
\frac{-3y+25}{4} ને 2 વાર ગુણાકાર કરો.
-\frac{9}{2}y+\frac{25}{2}=-28
-3y માં -\frac{3y}{2} ઍડ કરો.
-\frac{9}{2}y=-\frac{81}{2}
સમીકરણની બન્ને બાજુથી \frac{25}{2} નો ઘટાડો કરો.
y=9
સમીકરણની બન્ને બાજુનો -\frac{9}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{4}\times 9+\frac{25}{4}
x=-\frac{3}{4}y+\frac{25}{4}માં y માટે 9 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-27+25}{4}
9 ને -\frac{3}{4} વાર ગુણાકાર કરો.
x=-\frac{1}{2}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{27}{4} માં \frac{25}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{1}{2},y=9
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x-3y=-28
બીજા સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુનો 2 સાથે ગુણાકાર કરો.
4x+3y=25,2x-3y=-28
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&3\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\-28\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&3\\2&-3\end{matrix}\right))\left(\begin{matrix}4&3\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-3\end{matrix}\right))\left(\begin{matrix}25\\-28\end{matrix}\right)
\left(\begin{matrix}4&3\\2&-3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-3\end{matrix}\right))\left(\begin{matrix}25\\-28\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-3\end{matrix}\right))\left(\begin{matrix}25\\-28\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4\left(-3\right)-3\times 2}&-\frac{3}{4\left(-3\right)-3\times 2}\\-\frac{2}{4\left(-3\right)-3\times 2}&\frac{4}{4\left(-3\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}25\\-28\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{9}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}25\\-28\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 25+\frac{1}{6}\left(-28\right)\\\frac{1}{9}\times 25-\frac{2}{9}\left(-28\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\9\end{matrix}\right)
અંકગણિતીય કરો.
x=-\frac{1}{2},y=9
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x-3y=-28
બીજા સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુનો 2 સાથે ગુણાકાર કરો.
4x+3y=25,2x-3y=-28
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 4x+2\times 3y=2\times 25,4\times 2x+4\left(-3\right)y=4\left(-28\right)
4x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
8x+6y=50,8x-12y=-112
સરળ બનાવો.
8x-8x+6y+12y=50+112
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 8x+6y=50માંથી 8x-12y=-112 ને ઘટાડો.
6y+12y=50+112
-8x માં 8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 8x અને -8x ને વિભાજિત કરો.
18y=50+112
12y માં 6y ઍડ કરો.
18y=162
112 માં 50 ઍડ કરો.
y=9
બન્ને બાજુનો 18 થી ભાગાકાર કરો.
2x-3\times 9=-28
2x-3y=-28માં y માટે 9 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x-27=-28
9 ને -3 વાર ગુણાકાર કરો.
2x=-1
સમીકરણની બન્ને બાજુ 27 ઍડ કરો.
x=-\frac{1}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{1}{2},y=9
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.