મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

4x+3y=0,3x+3y=1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+3y=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-3y
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-3\right)y
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{3}{4}y
-3y ને \frac{1}{4} વાર ગુણાકાર કરો.
3\left(-\frac{3}{4}\right)y+3y=1
અન્ય સમીકરણ, 3x+3y=1 માં x માટે -\frac{3y}{4} નો પ્રતિસ્થાપન કરો.
-\frac{9}{4}y+3y=1
-\frac{3y}{4} ને 3 વાર ગુણાકાર કરો.
\frac{3}{4}y=1
3y માં -\frac{9y}{4} ઍડ કરો.
y=\frac{4}{3}
સમીકરણની બન્ને બાજુનો \frac{3}{4} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{4}\times \frac{4}{3}
x=-\frac{3}{4}yમાં y માટે \frac{4}{3} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-1
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{3}{4} નો \frac{4}{3} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=-1,y=\frac{4}{3}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+3y=0,3x+3y=1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
\left(\begin{matrix}4&3\\3&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-3\times 3}&-\frac{3}{4\times 3-3\times 3}\\-\frac{3}{4\times 3-3\times 3}&\frac{4}{4\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{4}{3}\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
x=-1,y=\frac{4}{3}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+3y=0,3x+3y=1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4x-3x+3y-3y=-1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 4x+3y=0માંથી 3x+3y=1 ને ઘટાડો.
4x-3x=-1
-3y માં 3y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 3y અને -3y ને વિભાજિત કરો.
x=-1
-3x માં 4x ઍડ કરો.
3\left(-1\right)+3y=1
3x+3y=1માં x માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
-3+3y=1
-1 ને 3 વાર ગુણાકાર કરો.
3y=4
સમીકરણની બન્ને બાજુ 3 ઍડ કરો.
y=\frac{4}{3}
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-1,y=\frac{4}{3}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.