x, y માટે ઉકેલો
x=9
y=-9
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x+2y=18,-3x-6y=27
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+2y=18
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-2y+18
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-2y+18\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{1}{2}y+\frac{9}{2}
-2y+18 ને \frac{1}{4} વાર ગુણાકાર કરો.
-3\left(-\frac{1}{2}y+\frac{9}{2}\right)-6y=27
અન્ય સમીકરણ, -3x-6y=27 માં x માટે \frac{-y+9}{2} નો પ્રતિસ્થાપન કરો.
\frac{3}{2}y-\frac{27}{2}-6y=27
\frac{-y+9}{2} ને -3 વાર ગુણાકાર કરો.
-\frac{9}{2}y-\frac{27}{2}=27
-6y માં \frac{3y}{2} ઍડ કરો.
-\frac{9}{2}y=\frac{81}{2}
સમીકરણની બન્ને બાજુ \frac{27}{2} ઍડ કરો.
y=-9
સમીકરણની બન્ને બાજુનો -\frac{9}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{1}{2}\left(-9\right)+\frac{9}{2}
x=-\frac{1}{2}y+\frac{9}{2}માં y માટે -9 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{9+9}{2}
-9 ને -\frac{1}{2} વાર ગુણાકાર કરો.
x=9
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{9}{2} માં \frac{9}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=9,y=-9
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+2y=18,-3x-6y=27
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\27\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-2\left(-3\right)}&-\frac{2}{4\left(-6\right)-2\left(-3\right)}\\-\frac{-3}{4\left(-6\right)-2\left(-3\right)}&\frac{4}{4\left(-6\right)-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}18\\27\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{9}\\-\frac{1}{6}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}18\\27\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 18+\frac{1}{9}\times 27\\-\frac{1}{6}\times 18-\frac{2}{9}\times 27\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-9\end{matrix}\right)
અંકગણિતીય કરો.
x=9,y=-9
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+2y=18,-3x-6y=27
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-3\times 4x-3\times 2y=-3\times 18,4\left(-3\right)x+4\left(-6\right)y=4\times 27
4x અને -3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
-12x-6y=-54,-12x-24y=108
સરળ બનાવો.
-12x+12x-6y+24y=-54-108
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -12x-6y=-54માંથી -12x-24y=108 ને ઘટાડો.
-6y+24y=-54-108
12x માં -12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -12x અને 12x ને વિભાજિત કરો.
18y=-54-108
24y માં -6y ઍડ કરો.
18y=-162
-108 માં -54 ઍડ કરો.
y=-9
બન્ને બાજુનો 18 થી ભાગાકાર કરો.
-3x-6\left(-9\right)=27
-3x-6y=27માં y માટે -9 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-3x+54=27
-9 ને -6 વાર ગુણાકાર કરો.
-3x=-27
સમીકરણની બન્ને બાજુથી 54 નો ઘટાડો કરો.
x=9
બન્ને બાજુનો -3 થી ભાગાકાર કરો.
x=9,y=-9
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}