x, y માટે ઉકેલો
x = -\frac{35}{8} = -4\frac{3}{8} = -4.375
y=-\frac{1}{4}=-0.25
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x+2y=-18,-2x-5y=10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+2y=-18
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-2y-18
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-2y-18\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{1}{2}y-\frac{9}{2}
-2y-18 ને \frac{1}{4} વાર ગુણાકાર કરો.
-2\left(-\frac{1}{2}y-\frac{9}{2}\right)-5y=10
અન્ય સમીકરણ, -2x-5y=10 માં x માટે \frac{-y-9}{2} નો પ્રતિસ્થાપન કરો.
y+9-5y=10
\frac{-y-9}{2} ને -2 વાર ગુણાકાર કરો.
-4y+9=10
-5y માં y ઍડ કરો.
-4y=1
સમીકરણની બન્ને બાજુથી 9 નો ઘટાડો કરો.
y=-\frac{1}{4}
બન્ને બાજુનો -4 થી ભાગાકાર કરો.
x=-\frac{1}{2}\left(-\frac{1}{4}\right)-\frac{9}{2}
x=-\frac{1}{2}y-\frac{9}{2}માં y માટે -\frac{1}{4} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{1}{8}-\frac{9}{2}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{1}{2} નો -\frac{1}{4} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{35}{8}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{8} માં -\frac{9}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{35}{8},y=-\frac{1}{4}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+2y=-18,-2x-5y=10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right))\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right))\left(\begin{matrix}-18\\10\end{matrix}\right)
\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right))\left(\begin{matrix}-18\\10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-2&-5\end{matrix}\right))\left(\begin{matrix}-18\\10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4\left(-5\right)-2\left(-2\right)}&-\frac{2}{4\left(-5\right)-2\left(-2\right)}\\-\frac{-2}{4\left(-5\right)-2\left(-2\right)}&\frac{4}{4\left(-5\right)-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-18\\10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{1}{8}\\-\frac{1}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-18\\10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}\left(-18\right)+\frac{1}{8}\times 10\\-\frac{1}{8}\left(-18\right)-\frac{1}{4}\times 10\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{35}{8}\\-\frac{1}{4}\end{matrix}\right)
અંકગણિતીય કરો.
x=-\frac{35}{8},y=-\frac{1}{4}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+2y=-18,-2x-5y=10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-2\times 4x-2\times 2y=-2\left(-18\right),4\left(-2\right)x+4\left(-5\right)y=4\times 10
4x અને -2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
-8x-4y=36,-8x-20y=40
સરળ બનાવો.
-8x+8x-4y+20y=36-40
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -8x-4y=36માંથી -8x-20y=40 ને ઘટાડો.
-4y+20y=36-40
8x માં -8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -8x અને 8x ને વિભાજિત કરો.
16y=36-40
20y માં -4y ઍડ કરો.
16y=-4
-40 માં 36 ઍડ કરો.
y=-\frac{1}{4}
બન્ને બાજુનો 16 થી ભાગાકાર કરો.
-2x-5\left(-\frac{1}{4}\right)=10
-2x-5y=10માં y માટે -\frac{1}{4} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-2x+\frac{5}{4}=10
-\frac{1}{4} ને -5 વાર ગુણાકાર કરો.
-2x=\frac{35}{4}
સમીકરણની બન્ને બાજુથી \frac{5}{4} નો ઘટાડો કરો.
x=-\frac{35}{8}
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
x=-\frac{35}{8},y=-\frac{1}{4}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}