મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x-9-y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી y ઘટાડો.
3x-y=9
બંને સાઇડ્સ માટે 9 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
9y+3-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
9y-x=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
3x-y=9,-x+9y=-3
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x-y=9
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=y+9
સમીકરણની બન્ને બાજુ y ઍડ કરો.
x=\frac{1}{3}\left(y+9\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=\frac{1}{3}y+3
y+9 ને \frac{1}{3} વાર ગુણાકાર કરો.
-\left(\frac{1}{3}y+3\right)+9y=-3
અન્ય સમીકરણ, -x+9y=-3 માં x માટે \frac{y}{3}+3 નો પ્રતિસ્થાપન કરો.
-\frac{1}{3}y-3+9y=-3
\frac{y}{3}+3 ને -1 વાર ગુણાકાર કરો.
\frac{26}{3}y-3=-3
9y માં -\frac{y}{3} ઍડ કરો.
\frac{26}{3}y=0
સમીકરણની બન્ને બાજુ 3 ઍડ કરો.
y=0
સમીકરણની બન્ને બાજુનો \frac{26}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=3
x=\frac{1}{3}y+3માં y માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=3,y=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x-9-y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી y ઘટાડો.
3x-y=9
બંને સાઇડ્સ માટે 9 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
9y+3-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
9y-x=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
3x-y=9,-x+9y=-3
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-3\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-\left(-\left(-1\right)\right)}&-\frac{-1}{3\times 9-\left(-\left(-1\right)\right)}\\-\frac{-1}{3\times 9-\left(-\left(-1\right)\right)}&\frac{3}{3\times 9-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}9\\-3\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{26}&\frac{1}{26}\\\frac{1}{26}&\frac{3}{26}\end{matrix}\right)\left(\begin{matrix}9\\-3\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{26}\times 9+\frac{1}{26}\left(-3\right)\\\frac{1}{26}\times 9+\frac{3}{26}\left(-3\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
અંકગણિતીય કરો.
x=3,y=0
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x-9-y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી y ઘટાડો.
3x-y=9
બંને સાઇડ્સ માટે 9 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
9y+3-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
9y-x=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
3x-y=9,-x+9y=-3
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-3x-\left(-y\right)=-9,3\left(-1\right)x+3\times 9y=3\left(-3\right)
3x અને -x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
-3x+y=-9,-3x+27y=-9
સરળ બનાવો.
-3x+3x+y-27y=-9+9
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -3x+y=-9માંથી -3x+27y=-9 ને ઘટાડો.
y-27y=-9+9
3x માં -3x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -3x અને 3x ને વિભાજિત કરો.
-26y=-9+9
-27y માં y ઍડ કરો.
-26y=0
9 માં -9 ઍડ કરો.
y=0
બન્ને બાજુનો -26 થી ભાગાકાર કરો.
-x=-3
-x+9y=-3માં y માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=3
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=3,y=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.