મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x-5y=-6,2x-3y=-5
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x-5y=-6
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=5y-6
સમીકરણની બન્ને બાજુ 5y ઍડ કરો.
x=\frac{1}{3}\left(5y-6\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=\frac{5}{3}y-2
5y-6 ને \frac{1}{3} વાર ગુણાકાર કરો.
2\left(\frac{5}{3}y-2\right)-3y=-5
અન્ય સમીકરણ, 2x-3y=-5 માં x માટે \frac{5y}{3}-2 નો પ્રતિસ્થાપન કરો.
\frac{10}{3}y-4-3y=-5
\frac{5y}{3}-2 ને 2 વાર ગુણાકાર કરો.
\frac{1}{3}y-4=-5
-3y માં \frac{10y}{3} ઍડ કરો.
\frac{1}{3}y=-1
સમીકરણની બન્ને બાજુ 4 ઍડ કરો.
y=-3
બન્ને બાજુનો 3 દ્વારા ગુણાકાર કરો.
x=\frac{5}{3}\left(-3\right)-2
x=\frac{5}{3}y-2માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-5-2
-3 ને \frac{5}{3} વાર ગુણાકાર કરો.
x=-7
-5 માં -2 ઍડ કરો.
x=-7,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x-5y=-6,2x-3y=-5
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-5\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right))\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-\left(-5\times 2\right)}&-\frac{-5}{3\left(-3\right)-\left(-5\times 2\right)}\\-\frac{2}{3\left(-3\right)-\left(-5\times 2\right)}&\frac{3}{3\left(-3\right)-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-5\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&5\\-2&3\end{matrix}\right)\left(\begin{matrix}-6\\-5\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\left(-6\right)+5\left(-5\right)\\-2\left(-6\right)+3\left(-5\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-3\end{matrix}\right)
અંકગણિતીય કરો.
x=-7,y=-3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x-5y=-6,2x-3y=-5
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 3x+2\left(-5\right)y=2\left(-6\right),3\times 2x+3\left(-3\right)y=3\left(-5\right)
3x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
6x-10y=-12,6x-9y=-15
સરળ બનાવો.
6x-6x-10y+9y=-12+15
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x-10y=-12માંથી 6x-9y=-15 ને ઘટાડો.
-10y+9y=-12+15
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
-y=-12+15
9y માં -10y ઍડ કરો.
-y=3
15 માં -12 ઍડ કરો.
y=-3
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
2x-3\left(-3\right)=-5
2x-3y=-5માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x+9=-5
-3 ને -3 વાર ગુણાકાર કરો.
2x=-14
સમીકરણની બન્ને બાજુથી 9 નો ઘટાડો કરો.
x=-7
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-7,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.