મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x-4y=-6,2x+4y=16
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x-4y=-6
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=4y-6
સમીકરણની બન્ને બાજુ 4y ઍડ કરો.
x=\frac{1}{3}\left(4y-6\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=\frac{4}{3}y-2
4y-6 ને \frac{1}{3} વાર ગુણાકાર કરો.
2\left(\frac{4}{3}y-2\right)+4y=16
અન્ય સમીકરણ, 2x+4y=16 માં x માટે \frac{4y}{3}-2 નો પ્રતિસ્થાપન કરો.
\frac{8}{3}y-4+4y=16
\frac{4y}{3}-2 ને 2 વાર ગુણાકાર કરો.
\frac{20}{3}y-4=16
4y માં \frac{8y}{3} ઍડ કરો.
\frac{20}{3}y=20
સમીકરણની બન્ને બાજુ 4 ઍડ કરો.
y=3
સમીકરણની બન્ને બાજુનો \frac{20}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{4}{3}\times 3-2
x=\frac{4}{3}y-2માં y માટે 3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=4-2
3 ને \frac{4}{3} વાર ગુણાકાર કરો.
x=2
4 માં -2 ઍડ કરો.
x=2,y=3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x-4y=-6,2x+4y=16
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\16\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
\left(\begin{matrix}3&-4\\2&4\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-4\times 2\right)}&-\frac{-4}{3\times 4-\left(-4\times 2\right)}\\-\frac{2}{3\times 4-\left(-4\times 2\right)}&\frac{3}{3\times 4-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{1}{10}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-6\right)+\frac{1}{5}\times 16\\-\frac{1}{10}\left(-6\right)+\frac{3}{20}\times 16\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x-4y=-6,2x+4y=16
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 3x+2\left(-4\right)y=2\left(-6\right),3\times 2x+3\times 4y=3\times 16
3x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
6x-8y=-12,6x+12y=48
સરળ બનાવો.
6x-6x-8y-12y=-12-48
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x-8y=-12માંથી 6x+12y=48 ને ઘટાડો.
-8y-12y=-12-48
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
-20y=-12-48
-12y માં -8y ઍડ કરો.
-20y=-60
-48 માં -12 ઍડ કરો.
y=3
બન્ને બાજુનો -20 થી ભાગાકાર કરો.
2x+4\times 3=16
2x+4y=16માં y માટે 3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x+12=16
3 ને 4 વાર ગુણાકાર કરો.
2x=4
સમીકરણની બન્ને બાજુથી 12 નો ઘટાડો કરો.
x=2
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=2,y=3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.