x, y માટે ઉકેલો
x=\frac{10}{11}\approx 0.909090909
y = \frac{15}{11} = 1\frac{4}{11} \approx 1.363636364
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
3x-2y=0,4x+y=5
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x-2y=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=2y
સમીકરણની બન્ને બાજુ 2y ઍડ કરો.
x=\frac{1}{3}\times 2y
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=\frac{2}{3}y
2y ને \frac{1}{3} વાર ગુણાકાર કરો.
4\times \frac{2}{3}y+y=5
અન્ય સમીકરણ, 4x+y=5 માં x માટે \frac{2y}{3} નો પ્રતિસ્થાપન કરો.
\frac{8}{3}y+y=5
\frac{2y}{3} ને 4 વાર ગુણાકાર કરો.
\frac{11}{3}y=5
y માં \frac{8y}{3} ઍડ કરો.
y=\frac{15}{11}
સમીકરણની બન્ને બાજુનો \frac{11}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{2}{3}\times \frac{15}{11}
x=\frac{2}{3}yમાં y માટે \frac{15}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{10}{11}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{2}{3} નો \frac{15}{11} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{10}{11},y=\frac{15}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x-2y=0,4x+y=5
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&-2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}3&-2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
\left(\begin{matrix}3&-2\\4&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\times 4\right)}&-\frac{-2}{3-\left(-2\times 4\right)}\\-\frac{4}{3-\left(-2\times 4\right)}&\frac{3}{3-\left(-2\times 4\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{4}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 5\\\frac{3}{11}\times 5\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{11}\\\frac{15}{11}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{10}{11},y=\frac{15}{11}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x-2y=0,4x+y=5
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 3x+4\left(-2\right)y=0,3\times 4x+3y=3\times 5
3x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
12x-8y=0,12x+3y=15
સરળ બનાવો.
12x-12x-8y-3y=-15
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x-8y=0માંથી 12x+3y=15 ને ઘટાડો.
-8y-3y=-15
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
-11y=-15
-3y માં -8y ઍડ કરો.
y=\frac{15}{11}
બન્ને બાજુનો -11 થી ભાગાકાર કરો.
4x+\frac{15}{11}=5
4x+y=5માં y માટે \frac{15}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x=\frac{40}{11}
સમીકરણની બન્ને બાજુથી \frac{15}{11} નો ઘટાડો કરો.
x=\frac{10}{11}
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{10}{11},y=\frac{15}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}