મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x-2y+3=0,4x+3y-47=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x-2y+3=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x-2y=-3
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
3x=2y-3
સમીકરણની બન્ને બાજુ 2y ઍડ કરો.
x=\frac{1}{3}\left(2y-3\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=\frac{2}{3}y-1
2y-3 ને \frac{1}{3} વાર ગુણાકાર કરો.
4\left(\frac{2}{3}y-1\right)+3y-47=0
અન્ય સમીકરણ, 4x+3y-47=0 માં x માટે \frac{2y}{3}-1 નો પ્રતિસ્થાપન કરો.
\frac{8}{3}y-4+3y-47=0
\frac{2y}{3}-1 ને 4 વાર ગુણાકાર કરો.
\frac{17}{3}y-4-47=0
3y માં \frac{8y}{3} ઍડ કરો.
\frac{17}{3}y-51=0
-47 માં -4 ઍડ કરો.
\frac{17}{3}y=51
સમીકરણની બન્ને બાજુ 51 ઍડ કરો.
y=9
સમીકરણની બન્ને બાજુનો \frac{17}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{2}{3}\times 9-1
x=\frac{2}{3}y-1માં y માટે 9 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=6-1
9 ને \frac{2}{3} વાર ગુણાકાર કરો.
x=5
6 માં -1 ઍડ કરો.
x=5,y=9
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x-2y+3=0,4x+3y-47=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&-2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\47\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}3&-2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
\left(\begin{matrix}3&-2\\4&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\times 4\right)}&-\frac{-2}{3\times 3-\left(-2\times 4\right)}\\-\frac{4}{3\times 3-\left(-2\times 4\right)}&\frac{3}{3\times 3-\left(-2\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-3\\47\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\-\frac{4}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}-3\\47\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\left(-3\right)+\frac{2}{17}\times 47\\-\frac{4}{17}\left(-3\right)+\frac{3}{17}\times 47\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
અંકગણિતીય કરો.
x=5,y=9
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x-2y+3=0,4x+3y-47=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 3x+4\left(-2\right)y+4\times 3=0,3\times 4x+3\times 3y+3\left(-47\right)=0
3x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
12x-8y+12=0,12x+9y-141=0
સરળ બનાવો.
12x-12x-8y-9y+12+141=0
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x-8y+12=0માંથી 12x+9y-141=0 ને ઘટાડો.
-8y-9y+12+141=0
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
-17y+12+141=0
-9y માં -8y ઍડ કરો.
-17y+153=0
141 માં 12 ઍડ કરો.
-17y=-153
સમીકરણની બન્ને બાજુથી 153 નો ઘટાડો કરો.
y=9
બન્ને બાજુનો -17 થી ભાગાકાર કરો.
4x+3\times 9-47=0
4x+3y-47=0માં y માટે 9 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x+27-47=0
9 ને 3 વાર ગુણાકાર કરો.
4x-20=0
-47 માં 27 ઍડ કરો.
4x=20
સમીકરણની બન્ને બાજુ 20 ઍડ કરો.
x=5
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=5,y=9
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.