મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=4 ab=3\times 1=3
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની 3x^{2}+ax+bx+1 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=1 b=3
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(3x^{2}+x\right)+\left(3x+1\right)
3x^{2}+4x+1 ને \left(3x^{2}+x\right)+\left(3x+1\right) તરીકે ફરીથી લખો.
x\left(3x+1\right)+3x+1
3x^{2}+x માં x ના અવયવ પાડો.
\left(3x+1\right)\left(x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 3x+1 ના અવયવ પાડો.
x=-\frac{1}{3} x=-1
સમીકરણનો ઉકેલ શોધવા માટે, 3x+1=0 અને x+1=0 ઉકેલો.
3x^{2}+4x+1=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 3 ને, b માટે 4 ને, અને c માટે 1 ને બદલીને મૂકો.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
વર્ગ 4.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
3 ને -4 વાર ગુણાકાર કરો.
x=\frac{-4±\sqrt{4}}{2\times 3}
-12 માં 16 ઍડ કરો.
x=\frac{-4±2}{2\times 3}
4 નો વર્ગ મૂળ લો.
x=\frac{-4±2}{6}
3 ને 2 વાર ગુણાકાર કરો.
x=-\frac{2}{6}
હવે x=\frac{-4±2}{6} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 2 માં -4 ઍડ કરો.
x=-\frac{1}{3}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-2}{6} ને ઘટાડો.
x=-\frac{6}{6}
હવે x=\frac{-4±2}{6} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -4 માંથી 2 ને ઘટાડો.
x=-1
-6 નો 6 થી ભાગાકાર કરો.
x=-\frac{1}{3} x=-1
સમીકરણ હવે ઉકેલાઈ ગયું છે.
3x^{2}+4x+1=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
3x^{2}+4x+1-1=-1
સમીકરણની બન્ને બાજુથી 1 નો ઘટાડો કરો.
3x^{2}+4x=-1
સ્વયંમાંથી 1 ઘટાડવા પર 0 બચે.
\frac{3x^{2}+4x}{3}=-\frac{1}{3}
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x^{2}+\frac{4}{3}x=-\frac{1}{3}
3 થી ભાગાકાર કરવાથી 3 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
\frac{4}{3}, x પદના ગુણાંકને, \frac{2}{3} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{2}{3} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{2}{3} નો વર્ગ કાઢો.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{4}{9} માં -\frac{1}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x+\frac{2}{3}\right)^{2}=\frac{1}{9}
અવયવ x^{2}+\frac{4}{3}x+\frac{4}{9}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{2}{3}=\frac{1}{3} x+\frac{2}{3}=-\frac{1}{3}
સરળ બનાવો.
x=-\frac{1}{3} x=-1
સમીકરણની બન્ને બાજુથી \frac{2}{3} નો ઘટાડો કરો.