મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x+8y=15,2x-8y=10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+8y=15
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-8y+15
સમીકરણની બન્ને બાજુથી 8y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-8y+15\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{8}{3}y+5
-8y+15 ને \frac{1}{3} વાર ગુણાકાર કરો.
2\left(-\frac{8}{3}y+5\right)-8y=10
અન્ય સમીકરણ, 2x-8y=10 માં x માટે -\frac{8y}{3}+5 નો પ્રતિસ્થાપન કરો.
-\frac{16}{3}y+10-8y=10
-\frac{8y}{3}+5 ને 2 વાર ગુણાકાર કરો.
-\frac{40}{3}y+10=10
-8y માં -\frac{16y}{3} ઍડ કરો.
-\frac{40}{3}y=0
સમીકરણની બન્ને બાજુથી 10 નો ઘટાડો કરો.
y=0
સમીકરણની બન્ને બાજુનો -\frac{40}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=5
x=-\frac{8}{3}y+5માં y માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=5,y=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+8y=15,2x-8y=10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&8\\2&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&8\\2&-8\end{matrix}\right))\left(\begin{matrix}3&8\\2&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\2&-8\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
\left(\begin{matrix}3&8\\2&-8\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\2&-8\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\2&-8\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-8\times 2}&-\frac{8}{3\left(-8\right)-8\times 2}\\-\frac{2}{3\left(-8\right)-8\times 2}&\frac{3}{3\left(-8\right)-8\times 2}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{1}{20}&-\frac{3}{40}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 15+\frac{1}{5}\times 10\\\frac{1}{20}\times 15-\frac{3}{40}\times 10\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
અંકગણિતીય કરો.
x=5,y=0
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+8y=15,2x-8y=10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 3x+2\times 8y=2\times 15,3\times 2x+3\left(-8\right)y=3\times 10
3x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
6x+16y=30,6x-24y=30
સરળ બનાવો.
6x-6x+16y+24y=30-30
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x+16y=30માંથી 6x-24y=30 ને ઘટાડો.
16y+24y=30-30
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
40y=30-30
24y માં 16y ઍડ કરો.
40y=0
-30 માં 30 ઍડ કરો.
y=0
બન્ને બાજુનો 40 થી ભાગાકાર કરો.
2x=10
2x-8y=10માં y માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=5
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=5,y=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.