મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x+7y=6,x+3y=12
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+7y=6
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-7y+6
સમીકરણની બન્ને બાજુથી 7y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-7y+6\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{7}{3}y+2
-7y+6 ને \frac{1}{3} વાર ગુણાકાર કરો.
-\frac{7}{3}y+2+3y=12
અન્ય સમીકરણ, x+3y=12 માં x માટે -\frac{7y}{3}+2 નો પ્રતિસ્થાપન કરો.
\frac{2}{3}y+2=12
3y માં -\frac{7y}{3} ઍડ કરો.
\frac{2}{3}y=10
સમીકરણની બન્ને બાજુથી 2 નો ઘટાડો કરો.
y=15
સમીકરણની બન્ને બાજુનો \frac{2}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{7}{3}\times 15+2
x=-\frac{7}{3}y+2માં y માટે 15 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-35+2
15 ને -\frac{7}{3} વાર ગુણાકાર કરો.
x=-33
-35 માં 2 ઍડ કરો.
x=-33,y=15
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+7y=6,x+3y=12
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&7\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\12\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&7\\1&3\end{matrix}\right))\left(\begin{matrix}3&7\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
\left(\begin{matrix}3&7\\1&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-7}&-\frac{7}{3\times 3-7}\\-\frac{1}{3\times 3-7}&\frac{3}{3\times 3-7}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{7}{2}\\-\frac{1}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 6-\frac{7}{2}\times 12\\-\frac{1}{2}\times 6+\frac{3}{2}\times 12\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-33\\15\end{matrix}\right)
અંકગણિતીય કરો.
x=-33,y=15
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+7y=6,x+3y=12
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3x+7y=6,3x+3\times 3y=3\times 12
3x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
3x+7y=6,3x+9y=36
સરળ બનાવો.
3x-3x+7y-9y=6-36
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 3x+7y=6માંથી 3x+9y=36 ને ઘટાડો.
7y-9y=6-36
-3x માં 3x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 3x અને -3x ને વિભાજિત કરો.
-2y=6-36
-9y માં 7y ઍડ કરો.
-2y=-30
-36 માં 6 ઍડ કરો.
y=15
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
x+3\times 15=12
x+3y=12માં y માટે 15 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x+45=12
15 ને 3 વાર ગુણાકાર કરો.
x=-33
સમીકરણની બન્ને બાજુથી 45 નો ઘટાડો કરો.
x=-33,y=15
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.