મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x+5y=13,x+y=5
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+5y=13
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-5y+13
સમીકરણની બન્ને બાજુથી 5y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-5y+13\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{5}{3}y+\frac{13}{3}
-5y+13 ને \frac{1}{3} વાર ગુણાકાર કરો.
-\frac{5}{3}y+\frac{13}{3}+y=5
અન્ય સમીકરણ, x+y=5 માં x માટે \frac{-5y+13}{3} નો પ્રતિસ્થાપન કરો.
-\frac{2}{3}y+\frac{13}{3}=5
y માં -\frac{5y}{3} ઍડ કરો.
-\frac{2}{3}y=\frac{2}{3}
સમીકરણની બન્ને બાજુથી \frac{13}{3} નો ઘટાડો કરો.
y=-1
સમીકરણની બન્ને બાજુનો -\frac{2}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{5}{3}\left(-1\right)+\frac{13}{3}
x=-\frac{5}{3}y+\frac{13}{3}માં y માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{5+13}{3}
-1 ને -\frac{5}{3} વાર ગુણાકાર કરો.
x=6
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{5}{3} માં \frac{13}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=6,y=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+5y=13,x+y=5
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\5\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}3&5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}13\\5\end{matrix}\right)
\left(\begin{matrix}3&5\\1&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}13\\5\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}13\\5\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-5}&-\frac{5}{3-5}\\-\frac{1}{3-5}&\frac{3}{3-5}\end{matrix}\right)\left(\begin{matrix}13\\5\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{5}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}13\\5\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 13+\frac{5}{2}\times 5\\\frac{1}{2}\times 13-\frac{3}{2}\times 5\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
અંકગણિતીય કરો.
x=6,y=-1
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+5y=13,x+y=5
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3x+5y=13,3x+3y=3\times 5
3x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
3x+5y=13,3x+3y=15
સરળ બનાવો.
3x-3x+5y-3y=13-15
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 3x+5y=13માંથી 3x+3y=15 ને ઘટાડો.
5y-3y=13-15
-3x માં 3x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 3x અને -3x ને વિભાજિત કરો.
2y=13-15
-3y માં 5y ઍડ કરો.
2y=-2
-15 માં 13 ઍડ કરો.
y=-1
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x-1=5
x+y=5માં y માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=6
સમીકરણની બન્ને બાજુ 1 ઍડ કરો.
x=6,y=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.