મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x+4y=-4,4x+3y=6
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+4y=-4
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-4y-4
સમીકરણની બન્ને બાજુથી 4y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-4y-4\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{4}{3}y-\frac{4}{3}
-4y-4 ને \frac{1}{3} વાર ગુણાકાર કરો.
4\left(-\frac{4}{3}y-\frac{4}{3}\right)+3y=6
અન્ય સમીકરણ, 4x+3y=6 માં x માટે \frac{-4y-4}{3} નો પ્રતિસ્થાપન કરો.
-\frac{16}{3}y-\frac{16}{3}+3y=6
\frac{-4y-4}{3} ને 4 વાર ગુણાકાર કરો.
-\frac{7}{3}y-\frac{16}{3}=6
3y માં -\frac{16y}{3} ઍડ કરો.
-\frac{7}{3}y=\frac{34}{3}
સમીકરણની બન્ને બાજુ \frac{16}{3} ઍડ કરો.
y=-\frac{34}{7}
સમીકરણની બન્ને બાજુનો -\frac{7}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{4}{3}\left(-\frac{34}{7}\right)-\frac{4}{3}
x=-\frac{4}{3}y-\frac{4}{3}માં y માટે -\frac{34}{7} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{136}{21}-\frac{4}{3}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{4}{3} નો -\frac{34}{7} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{36}{7}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{136}{21} માં -\frac{4}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{36}{7},y=-\frac{34}{7}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+4y=-4,4x+3y=6
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&4\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\6\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}3&4\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
\left(\begin{matrix}3&4\\4&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-4\times 4}&-\frac{4}{3\times 3-4\times 4}\\-\frac{4}{3\times 3-4\times 4}&\frac{3}{3\times 3-4\times 4}\end{matrix}\right)\left(\begin{matrix}-4\\6\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}&\frac{4}{7}\\\frac{4}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-4\\6\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}\left(-4\right)+\frac{4}{7}\times 6\\\frac{4}{7}\left(-4\right)-\frac{3}{7}\times 6\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{36}{7}\\-\frac{34}{7}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{36}{7},y=-\frac{34}{7}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+4y=-4,4x+3y=6
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 3x+4\times 4y=4\left(-4\right),3\times 4x+3\times 3y=3\times 6
3x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
12x+16y=-16,12x+9y=18
સરળ બનાવો.
12x-12x+16y-9y=-16-18
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x+16y=-16માંથી 12x+9y=18 ને ઘટાડો.
16y-9y=-16-18
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
7y=-16-18
-9y માં 16y ઍડ કરો.
7y=-34
-18 માં -16 ઍડ કરો.
y=-\frac{34}{7}
બન્ને બાજુનો 7 થી ભાગાકાર કરો.
4x+3\left(-\frac{34}{7}\right)=6
4x+3y=6માં y માટે -\frac{34}{7} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x-\frac{102}{7}=6
-\frac{34}{7} ને 3 વાર ગુણાકાર કરો.
4x=\frac{144}{7}
સમીકરણની બન્ને બાજુ \frac{102}{7} ઍડ કરો.
x=\frac{36}{7}
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{36}{7},y=-\frac{34}{7}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.