મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x+2y=11,4x+9y=117
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+2y=11
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-2y+11
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-2y+11\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{2}{3}y+\frac{11}{3}
-2y+11 ને \frac{1}{3} વાર ગુણાકાર કરો.
4\left(-\frac{2}{3}y+\frac{11}{3}\right)+9y=117
અન્ય સમીકરણ, 4x+9y=117 માં x માટે \frac{-2y+11}{3} નો પ્રતિસ્થાપન કરો.
-\frac{8}{3}y+\frac{44}{3}+9y=117
\frac{-2y+11}{3} ને 4 વાર ગુણાકાર કરો.
\frac{19}{3}y+\frac{44}{3}=117
9y માં -\frac{8y}{3} ઍડ કરો.
\frac{19}{3}y=\frac{307}{3}
સમીકરણની બન્ને બાજુથી \frac{44}{3} નો ઘટાડો કરો.
y=\frac{307}{19}
સમીકરણની બન્ને બાજુનો \frac{19}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{2}{3}\times \frac{307}{19}+\frac{11}{3}
x=-\frac{2}{3}y+\frac{11}{3}માં y માટે \frac{307}{19} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{614}{57}+\frac{11}{3}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{2}{3} નો \frac{307}{19} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{135}{19}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{614}{57} માં \frac{11}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{135}{19},y=\frac{307}{19}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+2y=11,4x+9y=117
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&2\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\117\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}3&2\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
\left(\begin{matrix}3&2\\4&9\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-2\times 4}&-\frac{2}{3\times 9-2\times 4}\\-\frac{4}{3\times 9-2\times 4}&\frac{3}{3\times 9-2\times 4}\end{matrix}\right)\left(\begin{matrix}11\\117\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{19}&-\frac{2}{19}\\-\frac{4}{19}&\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}11\\117\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{19}\times 11-\frac{2}{19}\times 117\\-\frac{4}{19}\times 11+\frac{3}{19}\times 117\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{135}{19}\\\frac{307}{19}\end{matrix}\right)
અંકગણિતીય કરો.
x=-\frac{135}{19},y=\frac{307}{19}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+2y=11,4x+9y=117
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 3x+4\times 2y=4\times 11,3\times 4x+3\times 9y=3\times 117
3x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
12x+8y=44,12x+27y=351
સરળ બનાવો.
12x-12x+8y-27y=44-351
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x+8y=44માંથી 12x+27y=351 ને ઘટાડો.
8y-27y=44-351
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
-19y=44-351
-27y માં 8y ઍડ કરો.
-19y=-307
-351 માં 44 ઍડ કરો.
y=\frac{307}{19}
બન્ને બાજુનો -19 થી ભાગાકાર કરો.
4x+9\times \frac{307}{19}=117
4x+9y=117માં y માટે \frac{307}{19} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x+\frac{2763}{19}=117
\frac{307}{19} ને 9 વાર ગુણાકાર કરો.
4x=-\frac{540}{19}
સમીકરણની બન્ને બાજુથી \frac{2763}{19} નો ઘટાડો કરો.
x=-\frac{135}{19}
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{135}{19},y=\frac{307}{19}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.