મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x+10y=11,-10x-8y=14
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+10y=11
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-10y+11
સમીકરણની બન્ને બાજુથી 10y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-10y+11\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{10}{3}y+\frac{11}{3}
-10y+11 ને \frac{1}{3} વાર ગુણાકાર કરો.
-10\left(-\frac{10}{3}y+\frac{11}{3}\right)-8y=14
અન્ય સમીકરણ, -10x-8y=14 માં x માટે \frac{-10y+11}{3} નો પ્રતિસ્થાપન કરો.
\frac{100}{3}y-\frac{110}{3}-8y=14
\frac{-10y+11}{3} ને -10 વાર ગુણાકાર કરો.
\frac{76}{3}y-\frac{110}{3}=14
-8y માં \frac{100y}{3} ઍડ કરો.
\frac{76}{3}y=\frac{152}{3}
સમીકરણની બન્ને બાજુ \frac{110}{3} ઍડ કરો.
y=2
સમીકરણની બન્ને બાજુનો \frac{76}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{10}{3}\times 2+\frac{11}{3}
x=-\frac{10}{3}y+\frac{11}{3}માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-20+11}{3}
2 ને -\frac{10}{3} વાર ગુણાકાર કરો.
x=-3
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{20}{3} માં \frac{11}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-3,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+10y=11,-10x-8y=14
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\14\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-10\left(-10\right)}&-\frac{10}{3\left(-8\right)-10\left(-10\right)}\\-\frac{-10}{3\left(-8\right)-10\left(-10\right)}&\frac{3}{3\left(-8\right)-10\left(-10\right)}\end{matrix}\right)\left(\begin{matrix}11\\14\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}&-\frac{5}{38}\\\frac{5}{38}&\frac{3}{76}\end{matrix}\right)\left(\begin{matrix}11\\14\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}\times 11-\frac{5}{38}\times 14\\\frac{5}{38}\times 11+\frac{3}{76}\times 14\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
અંકગણિતીય કરો.
x=-3,y=2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+10y=11,-10x-8y=14
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-10\times 3x-10\times 10y=-10\times 11,3\left(-10\right)x+3\left(-8\right)y=3\times 14
3x અને -10x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -10 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
-30x-100y=-110,-30x-24y=42
સરળ બનાવો.
-30x+30x-100y+24y=-110-42
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -30x-100y=-110માંથી -30x-24y=42 ને ઘટાડો.
-100y+24y=-110-42
30x માં -30x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -30x અને 30x ને વિભાજિત કરો.
-76y=-110-42
24y માં -100y ઍડ કરો.
-76y=-152
-42 માં -110 ઍડ કરો.
y=2
બન્ને બાજુનો -76 થી ભાગાકાર કરો.
-10x-8\times 2=14
-10x-8y=14માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-10x-16=14
2 ને -8 વાર ગુણાકાર કરો.
-10x=30
સમીકરણની બન્ને બાજુ 16 ઍડ કરો.
x=-3
બન્ને બાજુનો -10 થી ભાગાકાર કરો.
x=-3,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.