\left. \begin{array} { l } { 25 - 15 b + 9 b ^ { 2 } } \\ { ( m ^ { 2 } + 2 ) ^ { 2 } - 12 ( m ^ { 2 } + 2 ) + 36 } \\ { x ^ { 2 } + 6 a x + 9 a ^ { 2 } } \end{array} \right.
લઘુત્તમ સામાન્ય ગુણાંક
\left(9b^{2}-15b+25\right)\left(\left(x+3a\right)\left(m^{2}-4\right)\right)^{2}
મૂલ્યાંકન કરો
9b^{2}-15b+25,\ \left(m^{2}-4\right)^{2},\ \left(x+3a\right)^{2}
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\left(m^{2}-4\right)^{2}=\left(m-2\right)^{2}\left(m+2\right)^{2}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી અવયવ નથી.
\left(x+3a\right)^{2}\left(9b^{2}-15b+25\right)\left(m^{2}-4\right)^{2}
બધી પદાવલિઓમાં બધા અવયવો અને તેમના ગુરુત્તમ ઘાતને ઓળખો. લઘુત્તમ સામાન્ય અવયવી મેળવવા માટે આ અવયવોના ગુરુત્તમ ઘાતનો ગુણાકાર કરો.
9b^{2}x^{2}m^{4}-15bx^{2}m^{4}-72b^{2}m^{2}x^{2}+25x^{2}m^{4}+120bm^{2}x^{2}+144b^{2}x^{2}-200m^{2}x^{2}-240bx^{2}+400x^{2}+54axb^{2}m^{4}-90abxm^{4}-432axb^{2}m^{2}+150axm^{4}+720abxm^{2}+864axb^{2}-1200axm^{2}-1440abx+2400ax+81a^{2}b^{2}m^{4}-135ba^{2}m^{4}-648a^{2}b^{2}m^{2}+225a^{2}m^{4}+1080ba^{2}m^{2}+1296a^{2}b^{2}-1800a^{2}m^{2}-2160ba^{2}+3600a^{2}
પદાવલિને વિસ્તૃત કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}