મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2y-2x=-40,2y+3x=10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2y-2x=-40
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
2y=2x-40
સમીકરણની બન્ને બાજુ 2x ઍડ કરો.
y=\frac{1}{2}\left(2x-40\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
y=x-20
-40+2x ને \frac{1}{2} વાર ગુણાકાર કરો.
2\left(x-20\right)+3x=10
અન્ય સમીકરણ, 2y+3x=10 માં y માટે x-20 નો પ્રતિસ્થાપન કરો.
2x-40+3x=10
x-20 ને 2 વાર ગુણાકાર કરો.
5x-40=10
3x માં 2x ઍડ કરો.
5x=50
સમીકરણની બન્ને બાજુ 40 ઍડ કરો.
x=10
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
y=10-20
y=x-20માં x માટે 10 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=-10
10 માં -20 ઍડ કરો.
y=-10,x=10
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2y-2x=-40,2y+3x=10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-40\\10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
\left(\begin{matrix}2&-2\\2&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-2\times 2\right)}&-\frac{-2}{2\times 3-\left(-2\times 2\right)}\\-\frac{2}{2\times 3-\left(-2\times 2\right)}&\frac{2}{2\times 3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-40\\10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-40\\10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\left(-40\right)+\frac{1}{5}\times 10\\-\frac{1}{5}\left(-40\right)+\frac{1}{5}\times 10\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
અંકગણિતીય કરો.
y=-10,x=10
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
2y-2x=-40,2y+3x=10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2y-2y-2x-3x=-40-10
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2y-2x=-40માંથી 2y+3x=10 ને ઘટાડો.
-2x-3x=-40-10
-2y માં 2y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2y અને -2y ને વિભાજિત કરો.
-5x=-40-10
-3x માં -2x ઍડ કરો.
-5x=-50
-10 માં -40 ઍડ કરો.
x=10
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
2y+3\times 10=10
2y+3x=10માં x માટે 10 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
2y+30=10
10 ને 3 વાર ગુણાકાર કરો.
2y=-20
સમીકરણની બન્ને બાજુથી 30 નો ઘટાડો કરો.
y=-10
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
y=-10,x=10
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.