મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x-y=5,3x+4y=2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x-y=5
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=y+5
સમીકરણની બન્ને બાજુ y ઍડ કરો.
x=\frac{1}{2}\left(y+5\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{1}{2}y+\frac{5}{2}
y+5 ને \frac{1}{2} વાર ગુણાકાર કરો.
3\left(\frac{1}{2}y+\frac{5}{2}\right)+4y=2
અન્ય સમીકરણ, 3x+4y=2 માં x માટે \frac{5+y}{2} નો પ્રતિસ્થાપન કરો.
\frac{3}{2}y+\frac{15}{2}+4y=2
\frac{5+y}{2} ને 3 વાર ગુણાકાર કરો.
\frac{11}{2}y+\frac{15}{2}=2
4y માં \frac{3y}{2} ઍડ કરો.
\frac{11}{2}y=-\frac{11}{2}
સમીકરણની બન્ને બાજુથી \frac{15}{2} નો ઘટાડો કરો.
y=-1
સમીકરણની બન્ને બાજુનો \frac{11}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{1}{2}\left(-1\right)+\frac{5}{2}
x=\frac{1}{2}y+\frac{5}{2}માં y માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-1+5}{2}
-1 ને \frac{1}{2} વાર ગુણાકાર કરો.
x=2
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{1}{2} માં \frac{5}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=2,y=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x-y=5,3x+4y=2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
\left(\begin{matrix}2&-1\\3&4\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-\left(-3\right)}&-\frac{-1}{2\times 4-\left(-3\right)}\\-\frac{3}{2\times 4-\left(-3\right)}&\frac{2}{2\times 4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&\frac{1}{11}\\-\frac{3}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 5+\frac{1}{11}\times 2\\-\frac{3}{11}\times 5+\frac{2}{11}\times 2\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=-1
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x-y=5,3x+4y=2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 2x+3\left(-1\right)y=3\times 5,2\times 3x+2\times 4y=2\times 2
2x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
6x-3y=15,6x+8y=4
સરળ બનાવો.
6x-6x-3y-8y=15-4
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x-3y=15માંથી 6x+8y=4 ને ઘટાડો.
-3y-8y=15-4
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
-11y=15-4
-8y માં -3y ઍડ કરો.
-11y=11
-4 માં 15 ઍડ કરો.
y=-1
બન્ને બાજુનો -11 થી ભાગાકાર કરો.
3x+4\left(-1\right)=2
3x+4y=2માં y માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x-4=2
-1 ને 4 વાર ગુણાકાર કરો.
3x=6
સમીકરણની બન્ને બાજુ 4 ઍડ કરો.
x=2
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=2,y=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.