મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y-5x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 5x ઘટાડો.
2x-y=-2,-5x+y=-1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x-y=-2
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=y-2
સમીકરણની બન્ને બાજુ y ઍડ કરો.
x=\frac{1}{2}\left(y-2\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{1}{2}y-1
y-2 ને \frac{1}{2} વાર ગુણાકાર કરો.
-5\left(\frac{1}{2}y-1\right)+y=-1
અન્ય સમીકરણ, -5x+y=-1 માં x માટે \frac{y}{2}-1 નો પ્રતિસ્થાપન કરો.
-\frac{5}{2}y+5+y=-1
\frac{y}{2}-1 ને -5 વાર ગુણાકાર કરો.
-\frac{3}{2}y+5=-1
y માં -\frac{5y}{2} ઍડ કરો.
-\frac{3}{2}y=-6
સમીકરણની બન્ને બાજુથી 5 નો ઘટાડો કરો.
y=4
સમીકરણની બન્ને બાજુનો -\frac{3}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{1}{2}\times 4-1
x=\frac{1}{2}y-1માં y માટે 4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=2-1
4 ને \frac{1}{2} વાર ગુણાકાર કરો.
x=1
2 માં -1 ઍડ કરો.
x=1,y=4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-5x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 5x ઘટાડો.
2x-y=-2,-5x+y=-1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-\left(-5\right)\right)}&-\frac{-1}{2-\left(-\left(-5\right)\right)}\\-\frac{-5}{2-\left(-\left(-5\right)\right)}&\frac{2}{2-\left(-\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{1}{3}\\-\frac{5}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-2\right)-\frac{1}{3}\left(-1\right)\\-\frac{5}{3}\left(-2\right)-\frac{2}{3}\left(-1\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=4
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
y-5x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 5x ઘટાડો.
2x-y=-2,-5x+y=-1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-5\times 2x-5\left(-1\right)y=-5\left(-2\right),2\left(-5\right)x+2y=2\left(-1\right)
2x અને -5x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -5 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
-10x+5y=10,-10x+2y=-2
સરળ બનાવો.
-10x+10x+5y-2y=10+2
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -10x+5y=10માંથી -10x+2y=-2 ને ઘટાડો.
5y-2y=10+2
10x માં -10x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -10x અને 10x ને વિભાજિત કરો.
3y=10+2
-2y માં 5y ઍડ કરો.
3y=12
2 માં 10 ઍડ કરો.
y=4
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
-5x+4=-1
-5x+y=-1માં y માટે 4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-5x=-5
સમીકરણની બન્ને બાજુથી 4 નો ઘટાડો કરો.
x=1
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
x=1,y=4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.