મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x-5y=100,4x+y=120
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x-5y=100
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=5y+100
સમીકરણની બન્ને બાજુ 5y ઍડ કરો.
x=\frac{1}{2}\left(5y+100\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{5}{2}y+50
100+5y ને \frac{1}{2} વાર ગુણાકાર કરો.
4\left(\frac{5}{2}y+50\right)+y=120
અન્ય સમીકરણ, 4x+y=120 માં x માટે 50+\frac{5y}{2} નો પ્રતિસ્થાપન કરો.
10y+200+y=120
50+\frac{5y}{2} ને 4 વાર ગુણાકાર કરો.
11y+200=120
y માં 10y ઍડ કરો.
11y=-80
સમીકરણની બન્ને બાજુથી 200 નો ઘટાડો કરો.
y=-\frac{80}{11}
બન્ને બાજુનો 11 થી ભાગાકાર કરો.
x=\frac{5}{2}\left(-\frac{80}{11}\right)+50
x=\frac{5}{2}y+50માં y માટે -\frac{80}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{200}{11}+50
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{5}{2} નો -\frac{80}{11} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{350}{11}
-\frac{200}{11} માં 50 ઍડ કરો.
x=\frac{350}{11},y=-\frac{80}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x-5y=100,4x+y=120
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\120\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\times 4\right)}&-\frac{-5}{2-\left(-5\times 4\right)}\\-\frac{4}{2-\left(-5\times 4\right)}&\frac{2}{2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}100\\120\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ માટે \left(\begin{matrix}a&b\\c&d\end{matrix}\right), પ્રતિલોભ મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શક્યે છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{5}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}100\\120\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 100+\frac{5}{22}\times 120\\-\frac{2}{11}\times 100+\frac{1}{11}\times 120\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{350}{11}\\-\frac{80}{11}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{350}{11},y=-\frac{80}{11}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x-5y=100,4x+y=120
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 2x+4\left(-5\right)y=4\times 100,2\times 4x+2y=2\times 120
2x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
8x-20y=400,8x+2y=240
સરળ બનાવો.
8x-8x-20y-2y=400-240
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 8x-20y=400માંથી 8x+2y=240 ને ઘટાડો.
-20y-2y=400-240
-8x માં 8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 8x અને -8x ને વિભાજિત કરો.
-22y=400-240
-2y માં -20y ઍડ કરો.
-22y=160
-240 માં 400 ઍડ કરો.
y=-\frac{80}{11}
બન્ને બાજુનો -22 થી ભાગાકાર કરો.
4x-\frac{80}{11}=120
4x+y=120માં y માટે -\frac{80}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x=\frac{1400}{11}
સમીકરણની બન્ને બાજુ \frac{80}{11} ઍડ કરો.
x=\frac{350}{11}
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{350}{11},y=-\frac{80}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.