x, y માટે ઉકેલો
x = \frac{137}{43} = 3\frac{8}{43} \approx 3.186046512
y = -\frac{52}{43} = -1\frac{9}{43} \approx -1.209302326
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x-3y=10
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 10 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
17y+3x=-11
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
2x-3y=10,3x+17y=-11
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x-3y=10
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=3y+10
સમીકરણની બન્ને બાજુ 3y ઍડ કરો.
x=\frac{1}{2}\left(3y+10\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{3}{2}y+5
3y+10 ને \frac{1}{2} વાર ગુણાકાર કરો.
3\left(\frac{3}{2}y+5\right)+17y=-11
અન્ય સમીકરણ, 3x+17y=-11 માં x માટે \frac{3y}{2}+5 નો પ્રતિસ્થાપન કરો.
\frac{9}{2}y+15+17y=-11
\frac{3y}{2}+5 ને 3 વાર ગુણાકાર કરો.
\frac{43}{2}y+15=-11
17y માં \frac{9y}{2} ઍડ કરો.
\frac{43}{2}y=-26
સમીકરણની બન્ને બાજુથી 15 નો ઘટાડો કરો.
y=-\frac{52}{43}
સમીકરણની બન્ને બાજુનો \frac{43}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{3}{2}\left(-\frac{52}{43}\right)+5
x=\frac{3}{2}y+5માં y માટે -\frac{52}{43} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{78}{43}+5
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{3}{2} નો -\frac{52}{43} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{137}{43}
-\frac{78}{43} માં 5 ઍડ કરો.
x=\frac{137}{43},y=-\frac{52}{43}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x-3y=10
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 10 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
17y+3x=-11
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
2x-3y=10,3x+17y=-11
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&-3\\3&17\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-11\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&-3\\3&17\end{matrix}\right))\left(\begin{matrix}2&-3\\3&17\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&17\end{matrix}\right))\left(\begin{matrix}10\\-11\end{matrix}\right)
\left(\begin{matrix}2&-3\\3&17\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&17\end{matrix}\right))\left(\begin{matrix}10\\-11\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&17\end{matrix}\right))\left(\begin{matrix}10\\-11\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{2\times 17-\left(-3\times 3\right)}&-\frac{-3}{2\times 17-\left(-3\times 3\right)}\\-\frac{3}{2\times 17-\left(-3\times 3\right)}&\frac{2}{2\times 17-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-11\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{43}&\frac{3}{43}\\-\frac{3}{43}&\frac{2}{43}\end{matrix}\right)\left(\begin{matrix}10\\-11\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{43}\times 10+\frac{3}{43}\left(-11\right)\\-\frac{3}{43}\times 10+\frac{2}{43}\left(-11\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{137}{43}\\-\frac{52}{43}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{137}{43},y=-\frac{52}{43}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x-3y=10
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 10 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
17y+3x=-11
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
2x-3y=10,3x+17y=-11
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 2x+3\left(-3\right)y=3\times 10,2\times 3x+2\times 17y=2\left(-11\right)
2x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
6x-9y=30,6x+34y=-22
સરળ બનાવો.
6x-6x-9y-34y=30+22
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x-9y=30માંથી 6x+34y=-22 ને ઘટાડો.
-9y-34y=30+22
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
-43y=30+22
-34y માં -9y ઍડ કરો.
-43y=52
22 માં 30 ઍડ કરો.
y=-\frac{52}{43}
બન્ને બાજુનો -43 થી ભાગાકાર કરો.
3x+17\left(-\frac{52}{43}\right)=-11
3x+17y=-11માં y માટે -\frac{52}{43} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x-\frac{884}{43}=-11
-\frac{52}{43} ને 17 વાર ગુણાકાર કરો.
3x=\frac{411}{43}
સમીકરણની બન્ને બાજુ \frac{884}{43} ઍડ કરો.
x=\frac{137}{43}
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=\frac{137}{43},y=-\frac{52}{43}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}