x, y માટે ઉકેલો
x=\frac{1}{3}\approx 0.333333333
y=\frac{2}{9}\approx 0.222222222
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x-3y=0,-x+15y=3
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x-3y=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=3y
સમીકરણની બન્ને બાજુ 3y ઍડ કરો.
x=\frac{1}{2}\times 3y
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{3}{2}y
3y ને \frac{1}{2} વાર ગુણાકાર કરો.
-\frac{3}{2}y+15y=3
અન્ય સમીકરણ, -x+15y=3 માં x માટે \frac{3y}{2} નો પ્રતિસ્થાપન કરો.
\frac{27}{2}y=3
15y માં -\frac{3y}{2} ઍડ કરો.
y=\frac{2}{9}
સમીકરણની બન્ને બાજુનો \frac{27}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{3}{2}\times \frac{2}{9}
x=\frac{3}{2}yમાં y માટે \frac{2}{9} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{1}{3}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{3}{2} નો \frac{2}{9} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{1}{3},y=\frac{2}{9}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x-3y=0,-x+15y=3
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right))\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{2\times 15-\left(-3\left(-1\right)\right)}&-\frac{-3}{2\times 15-\left(-3\left(-1\right)\right)}\\-\frac{-1}{2\times 15-\left(-3\left(-1\right)\right)}&\frac{2}{2\times 15-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}&\frac{1}{9}\\\frac{1}{27}&\frac{2}{27}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 3\\\frac{2}{27}\times 3\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\\frac{2}{9}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{1}{3},y=\frac{2}{9}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x-3y=0,-x+15y=3
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-2x-\left(-3y\right)=0,2\left(-1\right)x+2\times 15y=2\times 3
2x અને -x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
-2x+3y=0,-2x+30y=6
સરળ બનાવો.
-2x+2x+3y-30y=-6
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -2x+3y=0માંથી -2x+30y=6 ને ઘટાડો.
3y-30y=-6
2x માં -2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -2x અને 2x ને વિભાજિત કરો.
-27y=-6
-30y માં 3y ઍડ કરો.
y=\frac{2}{9}
બન્ને બાજુનો -27 થી ભાગાકાર કરો.
-x+15\times \frac{2}{9}=3
-x+15y=3માં y માટે \frac{2}{9} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-x+\frac{10}{3}=3
\frac{2}{9} ને 15 વાર ગુણાકાર કરો.
-x=-\frac{1}{3}
સમીકરણની બન્ને બાજુથી \frac{10}{3} નો ઘટાડો કરો.
x=\frac{1}{3}
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=\frac{1}{3},y=\frac{2}{9}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}