x, y માટે ઉકેલો
x=1
y=3
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x+y=5,6x+6y=24
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+y=5
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-y+5
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-y+5\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{1}{2}y+\frac{5}{2}
-y+5 ને \frac{1}{2} વાર ગુણાકાર કરો.
6\left(-\frac{1}{2}y+\frac{5}{2}\right)+6y=24
અન્ય સમીકરણ, 6x+6y=24 માં x માટે \frac{-y+5}{2} નો પ્રતિસ્થાપન કરો.
-3y+15+6y=24
\frac{-y+5}{2} ને 6 વાર ગુણાકાર કરો.
3y+15=24
6y માં -3y ઍડ કરો.
3y=9
સમીકરણની બન્ને બાજુથી 15 નો ઘટાડો કરો.
y=3
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{1}{2}\times 3+\frac{5}{2}
x=-\frac{1}{2}y+\frac{5}{2}માં y માટે 3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-3+5}{2}
3 ને -\frac{1}{2} વાર ગુણાકાર કરો.
x=1
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{3}{2} માં \frac{5}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=1,y=3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+y=5,6x+6y=24
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&1\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}2&1\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
\left(\begin{matrix}2&1\\6&6\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-6}&-\frac{1}{2\times 6-6}\\-\frac{6}{2\times 6-6}&\frac{2}{2\times 6-6}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{6}\\-1&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5-\frac{1}{6}\times 24\\-5+\frac{1}{3}\times 24\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+y=5,6x+6y=24
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
6\times 2x+6y=6\times 5,2\times 6x+2\times 6y=2\times 24
2x અને 6x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 6 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
12x+6y=30,12x+12y=48
સરળ બનાવો.
12x-12x+6y-12y=30-48
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x+6y=30માંથી 12x+12y=48 ને ઘટાડો.
6y-12y=30-48
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
-6y=30-48
-12y માં 6y ઍડ કરો.
-6y=-18
-48 માં 30 ઍડ કરો.
y=3
બન્ને બાજુનો -6 થી ભાગાકાર કરો.
6x+6\times 3=24
6x+6y=24માં y માટે 3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
6x+18=24
3 ને 6 વાર ગુણાકાર કરો.
6x=6
સમીકરણની બન્ને બાજુથી 18 નો ઘટાડો કરો.
x=1
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x=1,y=3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}