x, y માટે ઉકેલો
x=50
y=6
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x+5y=130,4x+3y=218
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+5y=130
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-5y+130
સમીકરણની બન્ને બાજુથી 5y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-5y+130\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{5}{2}y+65
-5y+130 ને \frac{1}{2} વાર ગુણાકાર કરો.
4\left(-\frac{5}{2}y+65\right)+3y=218
અન્ય સમીકરણ, 4x+3y=218 માં x માટે -\frac{5y}{2}+65 નો પ્રતિસ્થાપન કરો.
-10y+260+3y=218
-\frac{5y}{2}+65 ને 4 વાર ગુણાકાર કરો.
-7y+260=218
3y માં -10y ઍડ કરો.
-7y=-42
સમીકરણની બન્ને બાજુથી 260 નો ઘટાડો કરો.
y=6
બન્ને બાજુનો -7 થી ભાગાકાર કરો.
x=-\frac{5}{2}\times 6+65
x=-\frac{5}{2}y+65માં y માટે 6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-15+65
6 ને -\frac{5}{2} વાર ગુણાકાર કરો.
x=50
-15 માં 65 ઍડ કરો.
x=50,y=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+5y=130,4x+3y=218
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&5\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}130\\218\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&5\\4&3\end{matrix}\right))\left(\begin{matrix}2&5\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\4&3\end{matrix}\right))\left(\begin{matrix}130\\218\end{matrix}\right)
\left(\begin{matrix}2&5\\4&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\4&3\end{matrix}\right))\left(\begin{matrix}130\\218\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\4&3\end{matrix}\right))\left(\begin{matrix}130\\218\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-5\times 4}&-\frac{5}{2\times 3-5\times 4}\\-\frac{4}{2\times 3-5\times 4}&\frac{2}{2\times 3-5\times 4}\end{matrix}\right)\left(\begin{matrix}130\\218\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{14}&\frac{5}{14}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}130\\218\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{14}\times 130+\frac{5}{14}\times 218\\\frac{2}{7}\times 130-\frac{1}{7}\times 218\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\6\end{matrix}\right)
અંકગણિતીય કરો.
x=50,y=6
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+5y=130,4x+3y=218
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 2x+4\times 5y=4\times 130,2\times 4x+2\times 3y=2\times 218
2x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
8x+20y=520,8x+6y=436
સરળ બનાવો.
8x-8x+20y-6y=520-436
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 8x+20y=520માંથી 8x+6y=436 ને ઘટાડો.
20y-6y=520-436
-8x માં 8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 8x અને -8x ને વિભાજિત કરો.
14y=520-436
-6y માં 20y ઍડ કરો.
14y=84
-436 માં 520 ઍડ કરો.
y=6
બન્ને બાજુનો 14 થી ભાગાકાર કરો.
4x+3\times 6=218
4x+3y=218માં y માટે 6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x+18=218
6 ને 3 વાર ગુણાકાર કરો.
4x=200
સમીકરણની બન્ને બાજુથી 18 નો ઘટાડો કરો.
x=50
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=50,y=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}