મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x+3y=53,3x-y=19
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+3y=53
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-3y+53
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-3y+53\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{3}{2}y+\frac{53}{2}
-3y+53 ને \frac{1}{2} વાર ગુણાકાર કરો.
3\left(-\frac{3}{2}y+\frac{53}{2}\right)-y=19
અન્ય સમીકરણ, 3x-y=19 માં x માટે \frac{-3y+53}{2} નો પ્રતિસ્થાપન કરો.
-\frac{9}{2}y+\frac{159}{2}-y=19
\frac{-3y+53}{2} ને 3 વાર ગુણાકાર કરો.
-\frac{11}{2}y+\frac{159}{2}=19
-y માં -\frac{9y}{2} ઍડ કરો.
-\frac{11}{2}y=-\frac{121}{2}
સમીકરણની બન્ને બાજુથી \frac{159}{2} નો ઘટાડો કરો.
y=11
સમીકરણની બન્ને બાજુનો -\frac{11}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{2}\times 11+\frac{53}{2}
x=-\frac{3}{2}y+\frac{53}{2}માં y માટે 11 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-33+53}{2}
11 ને -\frac{3}{2} વાર ગુણાકાર કરો.
x=10
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{33}{2} માં \frac{53}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=10,y=11
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+3y=53,3x-y=19
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&3\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}53\\19\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}2&3\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
\left(\begin{matrix}2&3\\3&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3\times 3}&-\frac{3}{2\left(-1\right)-3\times 3}\\-\frac{3}{2\left(-1\right)-3\times 3}&\frac{2}{2\left(-1\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}53\\19\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{3}{11}\\\frac{3}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}53\\19\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 53+\frac{3}{11}\times 19\\\frac{3}{11}\times 53-\frac{2}{11}\times 19\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
અંકગણિતીય કરો.
x=10,y=11
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+3y=53,3x-y=19
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 2x+3\times 3y=3\times 53,2\times 3x+2\left(-1\right)y=2\times 19
2x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
6x+9y=159,6x-2y=38
સરળ બનાવો.
6x-6x+9y+2y=159-38
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x+9y=159માંથી 6x-2y=38 ને ઘટાડો.
9y+2y=159-38
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
11y=159-38
2y માં 9y ઍડ કરો.
11y=121
-38 માં 159 ઍડ કરો.
y=11
બન્ને બાજુનો 11 થી ભાગાકાર કરો.
3x-11=19
3x-y=19માં y માટે 11 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x=30
સમીકરણની બન્ને બાજુ 11 ઍડ કરો.
x=10
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=10,y=11
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.