મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x+3y=4,x+y=4
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+3y=4
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-3y+4
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-3y+4\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{3}{2}y+2
-3y+4 ને \frac{1}{2} વાર ગુણાકાર કરો.
-\frac{3}{2}y+2+y=4
અન્ય સમીકરણ, x+y=4 માં x માટે -\frac{3y}{2}+2 નો પ્રતિસ્થાપન કરો.
-\frac{1}{2}y+2=4
y માં -\frac{3y}{2} ઍડ કરો.
-\frac{1}{2}y=2
સમીકરણની બન્ને બાજુથી 2 નો ઘટાડો કરો.
y=-4
બન્ને બાજુનો -2 દ્વારા ગુણાકાર કરો.
x=-\frac{3}{2}\left(-4\right)+2
x=-\frac{3}{2}y+2માં y માટે -4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=6+2
-4 ને -\frac{3}{2} વાર ગુણાકાર કરો.
x=8
6 માં 2 ઍડ કરો.
x=8,y=-4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+3y=4,x+y=4
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}2&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
\left(\begin{matrix}2&3\\1&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3}&-\frac{3}{2-3}\\-\frac{1}{2-3}&\frac{2}{2-3}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&3\\1&-2\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4+3\times 4\\4-2\times 4\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-4\end{matrix}\right)
અંકગણિતીય કરો.
x=8,y=-4
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+3y=4,x+y=4
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x+3y=4,2x+2y=2\times 4
2x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
2x+3y=4,2x+2y=8
સરળ બનાવો.
2x-2x+3y-2y=4-8
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x+3y=4માંથી 2x+2y=8 ને ઘટાડો.
3y-2y=4-8
-2x માં 2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2x અને -2x ને વિભાજિત કરો.
y=4-8
-2y માં 3y ઍડ કરો.
y=-4
-8 માં 4 ઍડ કરો.
x-4=4
x+y=4માં y માટે -4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=8
સમીકરણની બન્ને બાજુ 4 ઍડ કરો.
x=8,y=-4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.