મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x+3y=15,5x+4y=13
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+3y=15
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-3y+15
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-3y+15\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{3}{2}y+\frac{15}{2}
-3y+15 ને \frac{1}{2} વાર ગુણાકાર કરો.
5\left(-\frac{3}{2}y+\frac{15}{2}\right)+4y=13
અન્ય સમીકરણ, 5x+4y=13 માં x માટે \frac{-3y+15}{2} નો પ્રતિસ્થાપન કરો.
-\frac{15}{2}y+\frac{75}{2}+4y=13
\frac{-3y+15}{2} ને 5 વાર ગુણાકાર કરો.
-\frac{7}{2}y+\frac{75}{2}=13
4y માં -\frac{15y}{2} ઍડ કરો.
-\frac{7}{2}y=-\frac{49}{2}
સમીકરણની બન્ને બાજુથી \frac{75}{2} નો ઘટાડો કરો.
y=7
સમીકરણની બન્ને બાજુનો -\frac{7}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{2}\times 7+\frac{15}{2}
x=-\frac{3}{2}y+\frac{15}{2}માં y માટે 7 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-21+15}{2}
7 ને -\frac{3}{2} વાર ગુણાકાર કરો.
x=-3
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{21}{2} માં \frac{15}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-3,y=7
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+3y=15,5x+4y=13
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\13\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
\left(\begin{matrix}2&3\\5&4\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 5}&-\frac{3}{2\times 4-3\times 5}\\-\frac{5}{2\times 4-3\times 5}&\frac{2}{2\times 4-3\times 5}\end{matrix}\right)\left(\begin{matrix}15\\13\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}&\frac{3}{7}\\\frac{5}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}15\\13\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}\times 15+\frac{3}{7}\times 13\\\frac{5}{7}\times 15-\frac{2}{7}\times 13\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
અંકગણિતીય કરો.
x=-3,y=7
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+3y=15,5x+4y=13
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
5\times 2x+5\times 3y=5\times 15,2\times 5x+2\times 4y=2\times 13
2x અને 5x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 5 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
10x+15y=75,10x+8y=26
સરળ બનાવો.
10x-10x+15y-8y=75-26
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 10x+15y=75માંથી 10x+8y=26 ને ઘટાડો.
15y-8y=75-26
-10x માં 10x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 10x અને -10x ને વિભાજિત કરો.
7y=75-26
-8y માં 15y ઍડ કરો.
7y=49
-26 માં 75 ઍડ કરો.
y=7
બન્ને બાજુનો 7 થી ભાગાકાર કરો.
5x+4\times 7=13
5x+4y=13માં y માટે 7 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
5x+28=13
7 ને 4 વાર ગુણાકાર કરો.
5x=-15
સમીકરણની બન્ને બાજુથી 28 નો ઘટાડો કરો.
x=-3
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=-3,y=7
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.