x, y માટે ઉકેલો
x=2
y=-3
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x+3y+5=0,3x-2y-12=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+3y+5=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x+3y=-5
સમીકરણની બન્ને બાજુથી 5 નો ઘટાડો કરો.
2x=-3y-5
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-3y-5\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{3}{2}y-\frac{5}{2}
-3y-5 ને \frac{1}{2} વાર ગુણાકાર કરો.
3\left(-\frac{3}{2}y-\frac{5}{2}\right)-2y-12=0
અન્ય સમીકરણ, 3x-2y-12=0 માં x માટે \frac{-3y-5}{2} નો પ્રતિસ્થાપન કરો.
-\frac{9}{2}y-\frac{15}{2}-2y-12=0
\frac{-3y-5}{2} ને 3 વાર ગુણાકાર કરો.
-\frac{13}{2}y-\frac{15}{2}-12=0
-2y માં -\frac{9y}{2} ઍડ કરો.
-\frac{13}{2}y-\frac{39}{2}=0
-12 માં -\frac{15}{2} ઍડ કરો.
-\frac{13}{2}y=\frac{39}{2}
સમીકરણની બન્ને બાજુ \frac{39}{2} ઍડ કરો.
y=-3
સમીકરણની બન્ને બાજુનો -\frac{13}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{2}\left(-3\right)-\frac{5}{2}
x=-\frac{3}{2}y-\frac{5}{2}માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{9-5}{2}
-3 ને -\frac{3}{2} વાર ગુણાકાર કરો.
x=2
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{9}{2} માં -\frac{5}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=2,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+3y+5=0,3x-2y-12=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\12\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}-5\\12\end{matrix}\right)
\left(\begin{matrix}2&3\\3&-2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}-5\\12\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}-5\\12\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3\times 3}&-\frac{3}{2\left(-2\right)-3\times 3}\\-\frac{3}{2\left(-2\right)-3\times 3}&\frac{2}{2\left(-2\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}-5\\12\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\\frac{3}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-5\\12\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\left(-5\right)+\frac{3}{13}\times 12\\\frac{3}{13}\left(-5\right)-\frac{2}{13}\times 12\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=-3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+3y+5=0,3x-2y-12=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 2x+3\times 3y+3\times 5=0,2\times 3x+2\left(-2\right)y+2\left(-12\right)=0
2x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
6x+9y+15=0,6x-4y-24=0
સરળ બનાવો.
6x-6x+9y+4y+15+24=0
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x+9y+15=0માંથી 6x-4y-24=0 ને ઘટાડો.
9y+4y+15+24=0
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
13y+15+24=0
4y માં 9y ઍડ કરો.
13y+39=0
24 માં 15 ઍડ કરો.
13y=-39
સમીકરણની બન્ને બાજુથી 39 નો ઘટાડો કરો.
y=-3
બન્ને બાજુનો 13 થી ભાગાકાર કરો.
3x-2\left(-3\right)-12=0
3x-2y-12=0માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x+6-12=0
-3 ને -2 વાર ગુણાકાર કરો.
3x-6=0
-12 માં 6 ઍડ કરો.
3x=6
સમીકરણની બન્ને બાજુ 6 ઍડ કરો.
x=2
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=2,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}