x, y માટે ઉકેલો
x=-4
y=7
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
10x+4y=-12,-9x-5y=1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
10x+4y=-12
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
10x=-4y-12
સમીકરણની બન્ને બાજુથી 4y નો ઘટાડો કરો.
x=\frac{1}{10}\left(-4y-12\right)
બન્ને બાજુનો 10 થી ભાગાકાર કરો.
x=-\frac{2}{5}y-\frac{6}{5}
-4y-12 ને \frac{1}{10} વાર ગુણાકાર કરો.
-9\left(-\frac{2}{5}y-\frac{6}{5}\right)-5y=1
અન્ય સમીકરણ, -9x-5y=1 માં x માટે \frac{-2y-6}{5} નો પ્રતિસ્થાપન કરો.
\frac{18}{5}y+\frac{54}{5}-5y=1
\frac{-2y-6}{5} ને -9 વાર ગુણાકાર કરો.
-\frac{7}{5}y+\frac{54}{5}=1
-5y માં \frac{18y}{5} ઍડ કરો.
-\frac{7}{5}y=-\frac{49}{5}
સમીકરણની બન્ને બાજુથી \frac{54}{5} નો ઘટાડો કરો.
y=7
સમીકરણની બન્ને બાજુનો -\frac{7}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{2}{5}\times 7-\frac{6}{5}
x=-\frac{2}{5}y-\frac{6}{5}માં y માટે 7 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-14-6}{5}
7 ને -\frac{2}{5} વાર ગુણાકાર કરો.
x=-4
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{14}{5} માં -\frac{6}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-4,y=7
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
10x+4y=-12,-9x-5y=1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{10\left(-5\right)-4\left(-9\right)}&-\frac{4}{10\left(-5\right)-4\left(-9\right)}\\-\frac{-9}{10\left(-5\right)-4\left(-9\right)}&\frac{10}{10\left(-5\right)-4\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&\frac{2}{7}\\-\frac{9}{14}&-\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-12\right)+\frac{2}{7}\\-\frac{9}{14}\left(-12\right)-\frac{5}{7}\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
અંકગણિતીય કરો.
x=-4,y=7
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
10x+4y=-12,-9x-5y=1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-9\times 10x-9\times 4y=-9\left(-12\right),10\left(-9\right)x+10\left(-5\right)y=10
10x અને -9x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -9 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 10 સાથે ગુણાકાર કરો.
-90x-36y=108,-90x-50y=10
સરળ બનાવો.
-90x+90x-36y+50y=108-10
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -90x-36y=108માંથી -90x-50y=10 ને ઘટાડો.
-36y+50y=108-10
90x માં -90x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -90x અને 90x ને વિભાજિત કરો.
14y=108-10
50y માં -36y ઍડ કરો.
14y=98
-10 માં 108 ઍડ કરો.
y=7
બન્ને બાજુનો 14 થી ભાગાકાર કરો.
-9x-5\times 7=1
-9x-5y=1માં y માટે 7 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-9x-35=1
7 ને -5 વાર ગુણાકાર કરો.
-9x=36
સમીકરણની બન્ને બાજુ 35 ઍડ કરો.
x=-4
બન્ને બાજુનો -9 થી ભાગાકાર કરો.
x=-4,y=7
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}