મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

10x+2y=50,7x+2y=20
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
10x+2y=50
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
10x=-2y+50
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{10}\left(-2y+50\right)
બન્ને બાજુનો 10 થી ભાગાકાર કરો.
x=-\frac{1}{5}y+5
-2y+50 ને \frac{1}{10} વાર ગુણાકાર કરો.
7\left(-\frac{1}{5}y+5\right)+2y=20
અન્ય સમીકરણ, 7x+2y=20 માં x માટે -\frac{y}{5}+5 નો પ્રતિસ્થાપન કરો.
-\frac{7}{5}y+35+2y=20
-\frac{y}{5}+5 ને 7 વાર ગુણાકાર કરો.
\frac{3}{5}y+35=20
2y માં -\frac{7y}{5} ઍડ કરો.
\frac{3}{5}y=-15
સમીકરણની બન્ને બાજુથી 35 નો ઘટાડો કરો.
y=-25
સમીકરણની બન્ને બાજુનો \frac{3}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{1}{5}\left(-25\right)+5
x=-\frac{1}{5}y+5માં y માટે -25 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=5+5
-25 ને -\frac{1}{5} વાર ગુણાકાર કરો.
x=10
5 માં 5 ઍડ કરો.
x=10,y=-25
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
10x+2y=50,7x+2y=20
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}10&2\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\20\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}10&2\\7&2\end{matrix}\right))\left(\begin{matrix}10&2\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\7&2\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
\left(\begin{matrix}10&2\\7&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\7&2\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\7&2\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{10\times 2-2\times 7}&-\frac{2}{10\times 2-2\times 7}\\-\frac{7}{10\times 2-2\times 7}&\frac{10}{10\times 2-2\times 7}\end{matrix}\right)\left(\begin{matrix}50\\20\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\-\frac{7}{6}&\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}50\\20\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 50-\frac{1}{3}\times 20\\-\frac{7}{6}\times 50+\frac{5}{3}\times 20\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-25\end{matrix}\right)
અંકગણિતીય કરો.
x=10,y=-25
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
10x+2y=50,7x+2y=20
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
10x-7x+2y-2y=50-20
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 10x+2y=50માંથી 7x+2y=20 ને ઘટાડો.
10x-7x=50-20
-2y માં 2y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2y અને -2y ને વિભાજિત કરો.
3x=50-20
-7x માં 10x ઍડ કરો.
3x=30
-20 માં 50 ઍડ કરો.
x=10
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
7\times 10+2y=20
7x+2y=20માં x માટે 10 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
70+2y=20
10 ને 7 વાર ગુણાકાર કરો.
2y=-50
સમીકરણની બન્ને બાજુથી 70 નો ઘટાડો કરો.
y=-25
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=10,y=-25
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.