મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-x-3y=12,-5x-9y=18
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-x-3y=12
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-x=3y+12
સમીકરણની બન્ને બાજુ 3y ઍડ કરો.
x=-\left(3y+12\right)
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=-3y-12
12+3y ને -1 વાર ગુણાકાર કરો.
-5\left(-3y-12\right)-9y=18
અન્ય સમીકરણ, -5x-9y=18 માં x માટે -3y-12 નો પ્રતિસ્થાપન કરો.
15y+60-9y=18
-3y-12 ને -5 વાર ગુણાકાર કરો.
6y+60=18
-9y માં 15y ઍડ કરો.
6y=-42
સમીકરણની બન્ને બાજુથી 60 નો ઘટાડો કરો.
y=-7
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x=-3\left(-7\right)-12
x=-3y-12માં y માટે -7 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=21-12
-7 ને -3 વાર ગુણાકાર કરો.
x=9
21 માં -12 ઍડ કરો.
x=9,y=-7
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-x-3y=12,-5x-9y=18
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\18\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-\left(-9\right)-\left(-3\left(-5\right)\right)}&-\frac{-3}{-\left(-9\right)-\left(-3\left(-5\right)\right)}\\-\frac{-5}{-\left(-9\right)-\left(-3\left(-5\right)\right)}&-\frac{1}{-\left(-9\right)-\left(-3\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}12\\18\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\-\frac{5}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}12\\18\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 12-\frac{1}{2}\times 18\\-\frac{5}{6}\times 12+\frac{1}{6}\times 18\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-7\end{matrix}\right)
અંકગણિતીય કરો.
x=9,y=-7
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-x-3y=12,-5x-9y=18
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-5\left(-1\right)x-5\left(-3\right)y=-5\times 12,-\left(-5\right)x-\left(-9y\right)=-18
-x અને -5x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -5 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -1 સાથે ગુણાકાર કરો.
5x+15y=-60,5x+9y=-18
સરળ બનાવો.
5x-5x+15y-9y=-60+18
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 5x+15y=-60માંથી 5x+9y=-18 ને ઘટાડો.
15y-9y=-60+18
-5x માં 5x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 5x અને -5x ને વિભાજિત કરો.
6y=-60+18
-9y માં 15y ઍડ કરો.
6y=-42
18 માં -60 ઍડ કરો.
y=-7
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
-5x-9\left(-7\right)=18
-5x-9y=18માં y માટે -7 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-5x+63=18
-7 ને -9 વાર ગુણાકાર કરો.
-5x=-45
સમીકરણની બન્ને બાજુથી 63 નો ઘટાડો કરો.
x=9
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
x=9,y=-7
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.