મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-x+y=-9,2x+2y=14
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-x+y=-9
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-x=-y-9
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=-\left(-y-9\right)
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=y+9
-y-9 ને -1 વાર ગુણાકાર કરો.
2\left(y+9\right)+2y=14
અન્ય સમીકરણ, 2x+2y=14 માં x માટે y+9 નો પ્રતિસ્થાપન કરો.
2y+18+2y=14
y+9 ને 2 વાર ગુણાકાર કરો.
4y+18=14
2y માં 2y ઍડ કરો.
4y=-4
સમીકરણની બન્ને બાજુથી 18 નો ઘટાડો કરો.
y=-1
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-1+9
x=y+9માં y માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=8
-1 માં 9 ઍડ કરો.
x=8,y=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-x+y=-9,2x+2y=14
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-1&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\14\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-1&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
\left(\begin{matrix}-1&1\\2&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-2}&-\frac{1}{-2-2}\\-\frac{2}{-2-2}&-\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}-9\\14\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-9\\14\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-9\right)+\frac{1}{4}\times 14\\\frac{1}{2}\left(-9\right)+\frac{1}{4}\times 14\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
અંકગણિતીય કરો.
x=8,y=-1
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-x+y=-9,2x+2y=14
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\left(-1\right)x+2y=2\left(-9\right),-2x-2y=-14
-x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -1 સાથે ગુણાકાર કરો.
-2x+2y=-18,-2x-2y=-14
સરળ બનાવો.
-2x+2x+2y+2y=-18+14
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -2x+2y=-18માંથી -2x-2y=-14 ને ઘટાડો.
2y+2y=-18+14
2x માં -2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -2x અને 2x ને વિભાજિત કરો.
4y=-18+14
2y માં 2y ઍડ કરો.
4y=-4
14 માં -18 ઍડ કરો.
y=-1
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
2x+2\left(-1\right)=14
2x+2y=14માં y માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x-2=14
-1 ને 2 વાર ગુણાકાર કરો.
2x=16
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
x=8
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=8,y=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.