મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-8x-9y=-10,-4x-3y=10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-8x-9y=-10
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-8x=9y-10
સમીકરણની બન્ને બાજુ 9y ઍડ કરો.
x=-\frac{1}{8}\left(9y-10\right)
બન્ને બાજુનો -8 થી ભાગાકાર કરો.
x=-\frac{9}{8}y+\frac{5}{4}
9y-10 ને -\frac{1}{8} વાર ગુણાકાર કરો.
-4\left(-\frac{9}{8}y+\frac{5}{4}\right)-3y=10
અન્ય સમીકરણ, -4x-3y=10 માં x માટે -\frac{9y}{8}+\frac{5}{4} નો પ્રતિસ્થાપન કરો.
\frac{9}{2}y-5-3y=10
-\frac{9y}{8}+\frac{5}{4} ને -4 વાર ગુણાકાર કરો.
\frac{3}{2}y-5=10
-3y માં \frac{9y}{2} ઍડ કરો.
\frac{3}{2}y=15
સમીકરણની બન્ને બાજુ 5 ઍડ કરો.
y=10
સમીકરણની બન્ને બાજુનો \frac{3}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{9}{8}\times 10+\frac{5}{4}
x=-\frac{9}{8}y+\frac{5}{4}માં y માટે 10 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-45+5}{4}
10 ને -\frac{9}{8} વાર ગુણાકાર કરો.
x=-10
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{45}{4} માં \frac{5}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-10,y=10
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-8x-9y=-10,-4x-3y=10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}&-\frac{-9}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}\\-\frac{-4}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}&-\frac{8}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{3}{4}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-10\\10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-10\right)-\frac{3}{4}\times 10\\-\frac{1}{3}\left(-10\right)+\frac{2}{3}\times 10\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
અંકગણિતીય કરો.
x=-10,y=10
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-8x-9y=-10,-4x-3y=10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-4\left(-8\right)x-4\left(-9\right)y=-4\left(-10\right),-8\left(-4\right)x-8\left(-3\right)y=-8\times 10
-8x અને -4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -8 સાથે ગુણાકાર કરો.
32x+36y=40,32x+24y=-80
સરળ બનાવો.
32x-32x+36y-24y=40+80
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 32x+36y=40માંથી 32x+24y=-80 ને ઘટાડો.
36y-24y=40+80
-32x માં 32x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 32x અને -32x ને વિભાજિત કરો.
12y=40+80
-24y માં 36y ઍડ કરો.
12y=120
80 માં 40 ઍડ કરો.
y=10
બન્ને બાજુનો 12 થી ભાગાકાર કરો.
-4x-3\times 10=10
-4x-3y=10માં y માટે 10 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-4x-30=10
10 ને -3 વાર ગુણાકાર કરો.
-4x=40
સમીકરણની બન્ને બાજુ 30 ઍડ કરો.
x=-10
બન્ને બાજુનો -4 થી ભાગાકાર કરો.
x=-10,y=10
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.