મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-8x-6y=30,-6x+2y=-10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-8x-6y=30
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-8x=6y+30
સમીકરણની બન્ને બાજુ 6y ઍડ કરો.
x=-\frac{1}{8}\left(6y+30\right)
બન્ને બાજુનો -8 થી ભાગાકાર કરો.
x=-\frac{3}{4}y-\frac{15}{4}
30+6y ને -\frac{1}{8} વાર ગુણાકાર કરો.
-6\left(-\frac{3}{4}y-\frac{15}{4}\right)+2y=-10
અન્ય સમીકરણ, -6x+2y=-10 માં x માટે \frac{-3y-15}{4} નો પ્રતિસ્થાપન કરો.
\frac{9}{2}y+\frac{45}{2}+2y=-10
\frac{-3y-15}{4} ને -6 વાર ગુણાકાર કરો.
\frac{13}{2}y+\frac{45}{2}=-10
2y માં \frac{9y}{2} ઍડ કરો.
\frac{13}{2}y=-\frac{65}{2}
સમીકરણની બન્ને બાજુથી \frac{45}{2} નો ઘટાડો કરો.
y=-5
સમીકરણની બન્ને બાજુનો \frac{13}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{4}\left(-5\right)-\frac{15}{4}
x=-\frac{3}{4}y-\frac{15}{4}માં y માટે -5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{15-15}{4}
-5 ને -\frac{3}{4} વાર ગુણાકાર કરો.
x=0
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{15}{4} માં -\frac{15}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=0,y=-5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-8x-6y=30,-6x+2y=-10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}\\-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{8}{-8\times 2-\left(-6\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}&-\frac{3}{26}\\-\frac{3}{26}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}\times 30-\frac{3}{26}\left(-10\right)\\-\frac{3}{26}\times 30+\frac{2}{13}\left(-10\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
અંકગણિતીય કરો.
x=0,y=-5
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-8x-6y=30,-6x+2y=-10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-6\left(-8\right)x-6\left(-6\right)y=-6\times 30,-8\left(-6\right)x-8\times 2y=-8\left(-10\right)
-8x અને -6x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -6 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -8 સાથે ગુણાકાર કરો.
48x+36y=-180,48x-16y=80
સરળ બનાવો.
48x-48x+36y+16y=-180-80
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 48x+36y=-180માંથી 48x-16y=80 ને ઘટાડો.
36y+16y=-180-80
-48x માં 48x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 48x અને -48x ને વિભાજિત કરો.
52y=-180-80
16y માં 36y ઍડ કરો.
52y=-260
-80 માં -180 ઍડ કરો.
y=-5
બન્ને બાજુનો 52 થી ભાગાકાર કરો.
-6x+2\left(-5\right)=-10
-6x+2y=-10માં y માટે -5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-6x-10=-10
-5 ને 2 વાર ગુણાકાર કરો.
-6x=0
સમીકરણની બન્ને બાજુ 10 ઍડ કરો.
x=0
બન્ને બાજુનો -6 થી ભાગાકાર કરો.
x=0,y=-5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.