મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-7x+2y=-24,5x-y=18
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-7x+2y=-24
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-7x=-2y-24
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=-\frac{1}{7}\left(-2y-24\right)
બન્ને બાજુનો -7 થી ભાગાકાર કરો.
x=\frac{2}{7}y+\frac{24}{7}
-2y-24 ને -\frac{1}{7} વાર ગુણાકાર કરો.
5\left(\frac{2}{7}y+\frac{24}{7}\right)-y=18
અન્ય સમીકરણ, 5x-y=18 માં x માટે \frac{24+2y}{7} નો પ્રતિસ્થાપન કરો.
\frac{10}{7}y+\frac{120}{7}-y=18
\frac{24+2y}{7} ને 5 વાર ગુણાકાર કરો.
\frac{3}{7}y+\frac{120}{7}=18
-y માં \frac{10y}{7} ઍડ કરો.
\frac{3}{7}y=\frac{6}{7}
સમીકરણની બન્ને બાજુથી \frac{120}{7} નો ઘટાડો કરો.
y=2
સમીકરણની બન્ને બાજુનો \frac{3}{7} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{2}{7}\times 2+\frac{24}{7}
x=\frac{2}{7}y+\frac{24}{7}માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{4+24}{7}
2 ને \frac{2}{7} વાર ગુણાકાર કરો.
x=4
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{4}{7} માં \frac{24}{7} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=4,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-7x+2y=-24,5x-y=18
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\18\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-7\left(-1\right)-2\times 5}&-\frac{2}{-7\left(-1\right)-2\times 5}\\-\frac{5}{-7\left(-1\right)-2\times 5}&-\frac{7}{-7\left(-1\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}-24\\18\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{5}{3}&\frac{7}{3}\end{matrix}\right)\left(\begin{matrix}-24\\18\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-24\right)+\frac{2}{3}\times 18\\\frac{5}{3}\left(-24\right)+\frac{7}{3}\times 18\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
અંકગણિતીય કરો.
x=4,y=2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-7x+2y=-24,5x-y=18
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
5\left(-7\right)x+5\times 2y=5\left(-24\right),-7\times 5x-7\left(-1\right)y=-7\times 18
-7x અને 5x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 5 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -7 સાથે ગુણાકાર કરો.
-35x+10y=-120,-35x+7y=-126
સરળ બનાવો.
-35x+35x+10y-7y=-120+126
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -35x+10y=-120માંથી -35x+7y=-126 ને ઘટાડો.
10y-7y=-120+126
35x માં -35x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -35x અને 35x ને વિભાજિત કરો.
3y=-120+126
-7y માં 10y ઍડ કરો.
3y=6
126 માં -120 ઍડ કરો.
y=2
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
5x-2=18
5x-y=18માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
5x=20
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
x=4
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=4,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.