મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-5x-3y-9=0,4x-18y-54=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-5x-3y-9=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-5x-3y=9
સમીકરણની બન્ને બાજુ 9 ઍડ કરો.
-5x=3y+9
સમીકરણની બન્ને બાજુ 3y ઍડ કરો.
x=-\frac{1}{5}\left(3y+9\right)
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
x=-\frac{3}{5}y-\frac{9}{5}
9+3y ને -\frac{1}{5} વાર ગુણાકાર કરો.
4\left(-\frac{3}{5}y-\frac{9}{5}\right)-18y-54=0
અન્ય સમીકરણ, 4x-18y-54=0 માં x માટે \frac{-3y-9}{5} નો પ્રતિસ્થાપન કરો.
-\frac{12}{5}y-\frac{36}{5}-18y-54=0
\frac{-3y-9}{5} ને 4 વાર ગુણાકાર કરો.
-\frac{102}{5}y-\frac{36}{5}-54=0
-18y માં -\frac{12y}{5} ઍડ કરો.
-\frac{102}{5}y-\frac{306}{5}=0
-54 માં -\frac{36}{5} ઍડ કરો.
-\frac{102}{5}y=\frac{306}{5}
સમીકરણની બન્ને બાજુ \frac{306}{5} ઍડ કરો.
y=-3
સમીકરણની બન્ને બાજુનો -\frac{102}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{5}\left(-3\right)-\frac{9}{5}
x=-\frac{3}{5}y-\frac{9}{5}માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{9-9}{5}
-3 ને -\frac{3}{5} વાર ગુણાકાર કરો.
x=0
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{9}{5} માં -\frac{9}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=0,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-5x-3y-9=0,4x-18y-54=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\54\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right))\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right))\left(\begin{matrix}9\\54\end{matrix}\right)
\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right))\left(\begin{matrix}9\\54\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right))\left(\begin{matrix}9\\54\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-5\left(-18\right)-\left(-3\times 4\right)}&-\frac{-3}{-5\left(-18\right)-\left(-3\times 4\right)}\\-\frac{4}{-5\left(-18\right)-\left(-3\times 4\right)}&-\frac{5}{-5\left(-18\right)-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\54\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{17}&\frac{1}{34}\\-\frac{2}{51}&-\frac{5}{102}\end{matrix}\right)\left(\begin{matrix}9\\54\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{17}\times 9+\frac{1}{34}\times 54\\-\frac{2}{51}\times 9-\frac{5}{102}\times 54\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
અંકગણિતીય કરો.
x=0,y=-3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-5x-3y-9=0,4x-18y-54=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\left(-5\right)x+4\left(-3\right)y+4\left(-9\right)=0,-5\times 4x-5\left(-18\right)y-5\left(-54\right)=0
-5x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -5 સાથે ગુણાકાર કરો.
-20x-12y-36=0,-20x+90y+270=0
સરળ બનાવો.
-20x+20x-12y-90y-36-270=0
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -20x-12y-36=0માંથી -20x+90y+270=0 ને ઘટાડો.
-12y-90y-36-270=0
20x માં -20x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -20x અને 20x ને વિભાજિત કરો.
-102y-36-270=0
-90y માં -12y ઍડ કરો.
-102y-306=0
-270 માં -36 ઍડ કરો.
-102y=306
સમીકરણની બન્ને બાજુ 306 ઍડ કરો.
y=-3
બન્ને બાજુનો -102 થી ભાગાકાર કરો.
4x-18\left(-3\right)-54=0
4x-18y-54=0માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x+54-54=0
-3 ને -18 વાર ગુણાકાર કરો.
4x=0
-54 માં 54 ઍડ કરો.
x=0
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=0,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.