મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-5x+8y=0,-7x-8y=-96
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-5x+8y=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-5x=-8y
સમીકરણની બન્ને બાજુથી 8y નો ઘટાડો કરો.
x=-\frac{1}{5}\left(-8\right)y
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
x=\frac{8}{5}y
-8y ને -\frac{1}{5} વાર ગુણાકાર કરો.
-7\times \frac{8}{5}y-8y=-96
અન્ય સમીકરણ, -7x-8y=-96 માં x માટે \frac{8y}{5} નો પ્રતિસ્થાપન કરો.
-\frac{56}{5}y-8y=-96
\frac{8y}{5} ને -7 વાર ગુણાકાર કરો.
-\frac{96}{5}y=-96
-8y માં -\frac{56y}{5} ઍડ કરો.
y=5
સમીકરણની બન્ને બાજુનો -\frac{96}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{8}{5}\times 5
x=\frac{8}{5}yમાં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=8
5 ને \frac{8}{5} વાર ગુણાકાર કરો.
x=8,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-5x+8y=0,-7x-8y=-96
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-96\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-5\left(-8\right)-8\left(-7\right)}&-\frac{8}{-5\left(-8\right)-8\left(-7\right)}\\-\frac{-7}{-5\left(-8\right)-8\left(-7\right)}&-\frac{5}{-5\left(-8\right)-8\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}0\\-96\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{1}{12}\\\frac{7}{96}&-\frac{5}{96}\end{matrix}\right)\left(\begin{matrix}0\\-96\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\left(-96\right)\\-\frac{5}{96}\left(-96\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
અંકગણિતીય કરો.
x=8,y=5
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-5x+8y=0,-7x-8y=-96
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-7\left(-5\right)x-7\times 8y=0,-5\left(-7\right)x-5\left(-8\right)y=-5\left(-96\right)
-5x અને -7x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -7 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -5 સાથે ગુણાકાર કરો.
35x-56y=0,35x+40y=480
સરળ બનાવો.
35x-35x-56y-40y=-480
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 35x-56y=0માંથી 35x+40y=480 ને ઘટાડો.
-56y-40y=-480
-35x માં 35x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 35x અને -35x ને વિભાજિત કરો.
-96y=-480
-40y માં -56y ઍડ કરો.
y=5
બન્ને બાજુનો -96 થી ભાગાકાર કરો.
-7x-8\times 5=-96
-7x-8y=-96માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-7x-40=-96
5 ને -8 વાર ગુણાકાર કરો.
-7x=-56
સમીકરણની બન્ને બાજુ 40 ઍડ કરો.
x=8
બન્ને બાજુનો -7 થી ભાગાકાર કરો.
x=8,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.