મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-5x+10y=15,-5x+2y=-1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-5x+10y=15
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-5x=-10y+15
સમીકરણની બન્ને બાજુથી 10y નો ઘટાડો કરો.
x=-\frac{1}{5}\left(-10y+15\right)
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
x=2y-3
-10y+15 ને -\frac{1}{5} વાર ગુણાકાર કરો.
-5\left(2y-3\right)+2y=-1
અન્ય સમીકરણ, -5x+2y=-1 માં x માટે 2y-3 નો પ્રતિસ્થાપન કરો.
-10y+15+2y=-1
2y-3 ને -5 વાર ગુણાકાર કરો.
-8y+15=-1
2y માં -10y ઍડ કરો.
-8y=-16
સમીકરણની બન્ને બાજુથી 15 નો ઘટાડો કરો.
y=2
બન્ને બાજુનો -8 થી ભાગાકાર કરો.
x=2\times 2-3
x=2y-3માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=4-3
2 ને 2 વાર ગુણાકાર કરો.
x=1
4 માં -3 ઍડ કરો.
x=1,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-5x+10y=15,-5x+2y=-1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-10\left(-5\right)}&-\frac{10}{-5\times 2-10\left(-5\right)}\\-\frac{-5}{-5\times 2-10\left(-5\right)}&-\frac{5}{-5\times 2-10\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 15-\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 15-\frac{1}{8}\left(-1\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-5x+10y=15,-5x+2y=-1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-5x+5x+10y-2y=15+1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -5x+10y=15માંથી -5x+2y=-1 ને ઘટાડો.
10y-2y=15+1
5x માં -5x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -5x અને 5x ને વિભાજિત કરો.
8y=15+1
-2y માં 10y ઍડ કરો.
8y=16
1 માં 15 ઍડ કરો.
y=2
બન્ને બાજુનો 8 થી ભાગાકાર કરો.
-5x+2\times 2=-1
-5x+2y=-1માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-5x+4=-1
2 ને 2 વાર ગુણાકાર કરો.
-5x=-5
સમીકરણની બન્ને બાજુથી 4 નો ઘટાડો કરો.
x=1
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
x=1,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.