મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-3x+3y=-9,6x-y=-12
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-3x+3y=-9
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-3x=-3y-9
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=-\frac{1}{3}\left(-3y-9\right)
બન્ને બાજુનો -3 થી ભાગાકાર કરો.
x=y+3
-3y-9 ને -\frac{1}{3} વાર ગુણાકાર કરો.
6\left(y+3\right)-y=-12
અન્ય સમીકરણ, 6x-y=-12 માં x માટે y+3 નો પ્રતિસ્થાપન કરો.
6y+18-y=-12
y+3 ને 6 વાર ગુણાકાર કરો.
5y+18=-12
-y માં 6y ઍડ કરો.
5y=-30
સમીકરણની બન્ને બાજુથી 18 નો ઘટાડો કરો.
y=-6
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=-6+3
x=y+3માં y માટે -6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-3
-6 માં 3 ઍડ કરો.
x=-3,y=-6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-3x+3y=-9,6x-y=-12
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-12\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-3\times 6}&-\frac{3}{-3\left(-1\right)-3\times 6}\\-\frac{6}{-3\left(-1\right)-3\times 6}&-\frac{3}{-3\left(-1\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}-9\\-12\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{1}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-9\\-12\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\left(-9\right)+\frac{1}{5}\left(-12\right)\\\frac{2}{5}\left(-9\right)+\frac{1}{5}\left(-12\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
અંકગણિતીય કરો.
x=-3,y=-6
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-3x+3y=-9,6x-y=-12
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
6\left(-3\right)x+6\times 3y=6\left(-9\right),-3\times 6x-3\left(-1\right)y=-3\left(-12\right)
-3x અને 6x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 6 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -3 સાથે ગુણાકાર કરો.
-18x+18y=-54,-18x+3y=36
સરળ બનાવો.
-18x+18x+18y-3y=-54-36
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -18x+18y=-54માંથી -18x+3y=36 ને ઘટાડો.
18y-3y=-54-36
18x માં -18x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -18x અને 18x ને વિભાજિત કરો.
15y=-54-36
-3y માં 18y ઍડ કરો.
15y=-90
-36 માં -54 ઍડ કરો.
y=-6
બન્ને બાજુનો 15 થી ભાગાકાર કરો.
6x-\left(-6\right)=-12
6x-y=-12માં y માટે -6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
6x=-18
સમીકરણની બન્ને બાજુથી 6 નો ઘટાડો કરો.
x=-3
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x=-3,y=-6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.