મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2+y+x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે x ઍડ કરો.
y+x=-2
બન્ને બાજુથી 2 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
-10+y-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-x=10
બંને સાઇડ્સ માટે 10 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
y+x=-2,y-x=10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y+x=-2
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=-x-2
સમીકરણની બન્ને બાજુથી x નો ઘટાડો કરો.
-x-2-x=10
અન્ય સમીકરણ, y-x=10 માં y માટે -x-2 નો પ્રતિસ્થાપન કરો.
-2x-2=10
-x માં -x ઍડ કરો.
-2x=12
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
x=-6
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
y=-\left(-6\right)-2
y=-x-2માં x માટે -6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=6-2
-6 ને -1 વાર ગુણાકાર કરો.
y=4
6 માં -2 ઍડ કરો.
y=4,x=-6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2+y+x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે x ઍડ કરો.
y+x=-2
બન્ને બાજુથી 2 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
-10+y-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-x=10
બંને સાઇડ્સ માટે 10 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
y+x=-2,y-x=10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ માટે \left(\begin{matrix}a&b\\c&d\end{matrix}\right), પ્રતિલોભ મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શક્યે છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 10\\\frac{1}{2}\left(-2\right)-\frac{1}{2}\times 10\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-6\end{matrix}\right)
અંકગણિતીય કરો.
y=4,x=-6
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
2+y+x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે x ઍડ કરો.
y+x=-2
બન્ને બાજુથી 2 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
-10+y-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-x=10
બંને સાઇડ્સ માટે 10 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
y+x=-2,y-x=10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y+x+x=-2-10
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y+x=-2માંથી y-x=10 ને ઘટાડો.
x+x=-2-10
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
2x=-2-10
x માં x ઍડ કરો.
2x=-12
-10 માં -2 ઍડ કરો.
x=-6
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
y-\left(-6\right)=10
y-x=10માં x માટે -6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y+6=10
-6 ને -1 વાર ગુણાકાર કરો.
y=4
સમીકરણની બન્ને બાજુથી 6 નો ઘટાડો કરો.
y=4,x=-6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.