x, y માટે ઉકેલો
x=8801.1
y=101
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
x=8.89\times 990
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુનો 990 દ્વારા ગુણાકાર કરો.
x=8801.1
8801.1 મેળવવા માટે 8.89 સાથે 990 નો ગુણાકાર કરો.
\frac{8801.1}{990-y}=9.9
બીજા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
8801.1=9.9\left(-y+990\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ y એ 990 ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુનો -y+990 સાથે ગુણાકાર કરો.
8801.1=-9.9y+9801
9.9 સાથે -y+990 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
-9.9y+9801=8801.1
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
-9.9y=8801.1-9801
બન્ને બાજુથી 9801 ઘટાડો.
-9.9y=-999.9
-999.9 મેળવવા માટે 8801.1 માંથી 9801 ને ઘટાડો.
y=\frac{-999.9}{-9.9}
બન્ને બાજુનો -9.9 થી ભાગાકાર કરો.
y=\frac{-9999}{-99}
અંશ અને છેદ બંનેનો 10 દ્વારા ગુણાકાર કરીને \frac{-999.9}{-9.9} ને વિસ્તૃત કરો.
y=101
101 મેળવવા માટે -9999 નો -99 થી ભાગાકાર કરો.
x=8801.1 y=101
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}