મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
\frac{1}{2}x+\frac{1}{3}y=1
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
\frac{1}{2}x=-\frac{1}{3}y+1
સમીકરણની બન્ને બાજુથી \frac{y}{3} નો ઘટાડો કરો.
x=2\left(-\frac{1}{3}y+1\right)
બન્ને બાજુનો 2 દ્વારા ગુણાકાર કરો.
x=-\frac{2}{3}y+2
-\frac{y}{3}+1 ને 2 વાર ગુણાકાર કરો.
-\frac{2}{3}y+2+y=1
અન્ય સમીકરણ, x+y=1 માં x માટે -\frac{2y}{3}+2 નો પ્રતિસ્થાપન કરો.
\frac{1}{3}y+2=1
y માં -\frac{2y}{3} ઍડ કરો.
\frac{1}{3}y=-1
સમીકરણની બન્ને બાજુથી 2 નો ઘટાડો કરો.
y=-3
બન્ને બાજુનો 3 દ્વારા ગુણાકાર કરો.
x=-\frac{2}{3}\left(-3\right)+2
x=-\frac{2}{3}y+2માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=2+2
-3 ને -\frac{2}{3} વાર ગુણાકાર કરો.
x=4
2 માં 2 ઍડ કરો.
x=4,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{2}-\frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}\\-\frac{1}{\frac{1}{2}-\frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}-\frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6&-2\\-6&3\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6-2\\-6+3\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
અંકગણિતીય કરો.
x=4,y=-3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
\frac{1}{2}x+\frac{1}{3}y=1,\frac{1}{2}x+\frac{1}{2}y=\frac{1}{2}
\frac{x}{2} અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો \frac{1}{2} સાથે ગુણાકાર કરો.
\frac{1}{2}x-\frac{1}{2}x+\frac{1}{3}y-\frac{1}{2}y=1-\frac{1}{2}
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી \frac{1}{2}x+\frac{1}{3}y=1માંથી \frac{1}{2}x+\frac{1}{2}y=\frac{1}{2} ને ઘટાડો.
\frac{1}{3}y-\frac{1}{2}y=1-\frac{1}{2}
-\frac{x}{2} માં \frac{x}{2} ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો \frac{x}{2} અને -\frac{x}{2} ને વિભાજિત કરો.
-\frac{1}{6}y=1-\frac{1}{2}
-\frac{y}{2} માં \frac{y}{3} ઍડ કરો.
-\frac{1}{6}y=\frac{1}{2}
-\frac{1}{2} માં 1 ઍડ કરો.
y=-3
બન્ને બાજુનો -6 દ્વારા ગુણાકાર કરો.
x-3=1
x+y=1માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=4
સમીકરણની બન્ને બાજુ 3 ઍડ કરો.
x=4,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.