\left. \begin{array} { l } { \frac { 21 } { 32 } } \\ { \frac { 5 } { 21 } } \end{array} \right.
સૉર્ટ કરો
\frac{5}{21},\frac{21}{32}
મૂલ્યાંકન કરો
\frac{21}{32},\ \frac{5}{21}
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{441}{672},\frac{160}{672}
સૂચી \frac{21}{32},\frac{5}{21} માં સંખ્યાઓનો ઓછામાં ઓછો સામાન્ય છેદ 672 છે. સૂચીમાંની સંખ્યાઓને 672 છેદ સાથે અપૂર્ણાંકોમાં રૂપાંતરિત કરો.
\frac{441}{672}
સૂચીને સૉર્ટ કરવા માટે, એકલ તત્વ \frac{441}{672} થી પ્રારંભ કરો.
\frac{160}{672},\frac{441}{672}
નવી સૂચિમાં \frac{160}{672} ને યોગ્ય સ્થાને સામેલ કરો.
\frac{5}{21},\frac{21}{32}
પ્રાપ્ત થયેલ અપૂર્ણાંકોની પ્રારંભિક મૂલ્યો સાથે બદલી કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}