\left. \begin{array} { l } { f {(x)} = 20 {(2 x ^ {3} + 3 x ^ {2} - 2 x)} }\\ { g = 8 x }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { p = o }\\ { q = p }\\ { \text{Solve for } r \text{ where} } \\ { r = q } \end{array} \right.
f, x, g, h, j, k, l, m, n, o, p, q, r માટે ઉકેલો
r=i
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
h=i
ચોથા સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
i=g
ત્રીજા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
g=i
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
i=8x
બીજા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
\frac{i}{8}=x
બન્ને બાજુનો 8 થી ભાગાકાર કરો.
\frac{1}{8}i=x
\frac{1}{8}i મેળવવા માટે i નો 8 થી ભાગાકાર કરો.
x=\frac{1}{8}i
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
f\times \left(\frac{1}{8}i\right)=20\left(2\times \left(\frac{1}{8}i\right)^{3}+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
પ્રથમ સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
f\times \left(\frac{1}{8}i\right)=20\left(2\times \left(-\frac{1}{512}i\right)+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
3 ના \frac{1}{8}i ની ગણના કરો અને -\frac{1}{512}i મેળવો.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
-\frac{1}{256}i મેળવવા માટે 2 સાથે -\frac{1}{512}i નો ગુણાકાર કરો.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i+3\left(-\frac{1}{64}\right)-2\times \left(\frac{1}{8}i\right)\right)
2 ના \frac{1}{8}i ની ગણના કરો અને -\frac{1}{64} મેળવો.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i-\frac{3}{64}-2\times \left(\frac{1}{8}i\right)\right)
-\frac{3}{64} મેળવવા માટે 3 સાથે -\frac{1}{64} નો ગુણાકાર કરો.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i-\frac{3}{64}-\frac{1}{4}i\right)
-\frac{1}{4}i મેળવવા માટે -2 સાથે \frac{1}{8}i નો ગુણાકાર કરો.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{3}{64}-\frac{65}{256}i\right)
-\frac{1}{256}i-\frac{3}{64}-\frac{1}{4}i માં સરવાળા કરો.
f\times \left(\frac{1}{8}i\right)=-\frac{15}{16}-\frac{325}{64}i
-\frac{15}{16}-\frac{325}{64}i મેળવવા માટે 20 સાથે -\frac{3}{64}-\frac{65}{256}i નો ગુણાકાર કરો.
f=\frac{-\frac{15}{16}-\frac{325}{64}i}{\frac{1}{8}i}
બન્ને બાજુનો \frac{1}{8}i થી ભાગાકાર કરો.
f=\frac{\frac{325}{64}-\frac{15}{16}i}{-\frac{1}{8}}
કાલ્પનિક એકમ i દ્વારા \frac{-\frac{15}{16}-\frac{325}{64}i}{\frac{1}{8}i} ના અંશ અને છેદ એમ બન્નેનો ગુણાકાર કરો.
f=-\frac{325}{8}+\frac{15}{2}i
-\frac{325}{8}+\frac{15}{2}i મેળવવા માટે \frac{325}{64}-\frac{15}{16}i નો -\frac{1}{8} થી ભાગાકાર કરો.
f=-\frac{325}{8}+\frac{15}{2}i x=\frac{1}{8}i g=i h=i j=i k=i l=i m=i n=i o=i p=i q=i r=i
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}