\left. \begin{array} { l } { 12 + 9 = n + 12 }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { \text{Solve for } x \text{ where} } \\ { x = w } \end{array} \right.
n, o, p, q, r, s, t, u, v, w, x માટે ઉકેલો
x=9
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
21=n+12
પ્રથમ સમીકરણનો વિચાર કરો. 21મેળવવા માટે 12 અને 9 ને ઍડ કરો.
n+12=21
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
n=21-12
બન્ને બાજુથી 12 ઘટાડો.
n=9
9 મેળવવા માટે 21 માંથી 12 ને ઘટાડો.
o=9
બીજા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
p=9
ત્રીજા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
q=9
ચોથા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
r=9
પાંચમાં સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
s=9
સમીકરણ (6)નો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
t=9
સમીકરણ (7)નો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
u=9
સમીકરણ (8)નો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
v=9
સમીકરણ (9)નો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
w=9
સમીકરણ (10)નો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
x=9
સમીકરણ (11)નો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
n=9 o=9 p=9 q=9 r=9 s=9 t=9 u=9 v=9 w=9 x=9
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}