p, q, r, s, t, u માટે ઉકેલો
u=6
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
3p-2\left(p-3\right)=12
પ્રથમ સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુઓનો 12 દ્વારા ગુણાકાર કરો, 4,6 ના સૌથી ઓછા સામાન્ય ભાજક.
3p-2p+6=12
-2 સાથે p-3 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
p+6=12
p ને મેળવવા માટે 3p અને -2p ને એકસાથે કરો.
p=12-6
બન્ને બાજુથી 6 ઘટાડો.
p=6
6 મેળવવા માટે 12 માંથી 6 ને ઘટાડો.
q=6
બીજા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
r=6
ત્રીજા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
s=6
ચોથા સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
t=6
પાંચમાં સમીકરણનો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
u=6
સમીકરણ (6)નો વિચાર કરો. સમીકરણમાં ચલોના જાણીતા મૂલ્યો દાખલ કરો.
p=6 q=6 r=6 s=6 t=6 u=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}