y, x માટે ઉકેલો
x=-0.8
y=0.6
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
y-0.5x=1
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 0.5x ઘટાડો.
y-0.5x=1,3y+x=1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y-0.5x=1
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=0.5x+1
સમીકરણની બન્ને બાજુ \frac{x}{2} ઍડ કરો.
3\left(0.5x+1\right)+x=1
અન્ય સમીકરણ, 3y+x=1 માં y માટે \frac{x}{2}+1 નો પ્રતિસ્થાપન કરો.
1.5x+3+x=1
\frac{x}{2}+1 ને 3 વાર ગુણાકાર કરો.
2.5x+3=1
x માં \frac{3x}{2} ઍડ કરો.
2.5x=-2
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
x=-0.8
સમીકરણની બન્ને બાજુનો 2.5 થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
y=0.5\left(-0.8\right)+1
y=0.5x+1માં x માટે -0.8 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=-0.4+1
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને 0.5 નો -0.8 વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
y=0.6
-0.4 માં 1 ઍડ કરો.
y=0.6,x=-0.8
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-0.5x=1
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 0.5x ઘટાડો.
y-0.5x=1,3y+x=1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-0.5\times 3\right)}&-\frac{-0.5}{1-\left(-0.5\times 3\right)}\\-\frac{3}{1-\left(-0.5\times 3\right)}&\frac{1}{1-\left(-0.5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.4&0.2\\-1.2&0.4\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2+1}{5}\\\frac{-6+2}{5}\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.6\\-0.8\end{matrix}\right)
અંકગણિતીય કરો.
y=0.6,x=-0.8
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y-0.5x=1
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 0.5x ઘટાડો.
y-0.5x=1,3y+x=1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3y+3\left(-0.5\right)x=3,3y+x=1
y અને 3y ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
3y-1.5x=3,3y+x=1
સરળ બનાવો.
3y-3y-1.5x-x=3-1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 3y-1.5x=3માંથી 3y+x=1 ને ઘટાડો.
-1.5x-x=3-1
-3y માં 3y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 3y અને -3y ને વિભાજિત કરો.
-2.5x=3-1
-x માં -\frac{3x}{2} ઍડ કરો.
-2.5x=2
-1 માં 3 ઍડ કરો.
x=-0.8
સમીકરણની બન્ને બાજુનો -2.5 થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
3y-0.8=1
3y+x=1માં x માટે -0.8 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
3y=1.8
સમીકરણની બન્ને બાજુ 0.8 ઍડ કરો.
y=0.6
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
y=0.6,x=-0.8
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}