મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x-y=64,12x+26y=19
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x-y=64
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=y+64
સમીકરણની બન્ને બાજુ y ઍડ કરો.
12\left(y+64\right)+26y=19
અન્ય સમીકરણ, 12x+26y=19 માં x માટે y+64 નો પ્રતિસ્થાપન કરો.
12y+768+26y=19
y+64 ને 12 વાર ગુણાકાર કરો.
38y+768=19
26y માં 12y ઍડ કરો.
38y=-749
સમીકરણની બન્ને બાજુથી 768 નો ઘટાડો કરો.
y=-\frac{749}{38}
બન્ને બાજુનો 38 થી ભાગાકાર કરો.
x=-\frac{749}{38}+64
x=y+64માં y માટે -\frac{749}{38} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{1683}{38}
-\frac{749}{38} માં 64 ઍડ કરો.
x=\frac{1683}{38},y=-\frac{749}{38}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x-y=64,12x+26y=19
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\19\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-1\\12&26\end{matrix}\right))\left(\begin{matrix}1&-1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
\left(\begin{matrix}1&-1\\12&26\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{26}{26-\left(-12\right)}&-\frac{-1}{26-\left(-12\right)}\\-\frac{12}{26-\left(-12\right)}&\frac{1}{26-\left(-12\right)}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&\frac{1}{38}\\-\frac{6}{19}&\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64+\frac{1}{38}\times 19\\-\frac{6}{19}\times 64+\frac{1}{38}\times 19\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1683}{38}\\-\frac{749}{38}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{1683}{38},y=-\frac{749}{38}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x-y=64,12x+26y=19
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
12x+12\left(-1\right)y=12\times 64,12x+26y=19
x અને 12x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 12 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
12x-12y=768,12x+26y=19
સરળ બનાવો.
12x-12x-12y-26y=768-19
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x-12y=768માંથી 12x+26y=19 ને ઘટાડો.
-12y-26y=768-19
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
-38y=768-19
-26y માં -12y ઍડ કરો.
-38y=749
-19 માં 768 ઍડ કરો.
y=-\frac{749}{38}
બન્ને બાજુનો -38 થી ભાગાકાર કરો.
12x+26\left(-\frac{749}{38}\right)=19
12x+26y=19માં y માટે -\frac{749}{38} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
12x-\frac{9737}{19}=19
-\frac{749}{38} ને 26 વાર ગુણાકાર કરો.
12x=\frac{10098}{19}
સમીકરણની બન્ને બાજુ \frac{9737}{19} ઍડ કરો.
x=\frac{1683}{38}
બન્ને બાજુનો 12 થી ભાગાકાર કરો.
x=\frac{1683}{38},y=-\frac{749}{38}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.