મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x+y=64,0.12x-0.26y=0.19
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+y=64
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-y+64
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
0.12\left(-y+64\right)-0.26y=0.19
અન્ય સમીકરણ, 0.12x-0.26y=0.19 માં x માટે -y+64 નો પ્રતિસ્થાપન કરો.
-0.12y+7.68-0.26y=0.19
-y+64 ને 0.12 વાર ગુણાકાર કરો.
-0.38y+7.68=0.19
-\frac{13y}{50} માં -\frac{3y}{25} ઍડ કરો.
-0.38y=-7.49
સમીકરણની બન્ને બાજુથી 7.68 નો ઘટાડો કરો.
y=\frac{749}{38}
સમીકરણની બન્ને બાજુનો -0.38 થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{749}{38}+64
x=-y+64માં y માટે \frac{749}{38} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{1683}{38}
-\frac{749}{38} માં 64 ઍડ કરો.
x=\frac{1683}{38},y=\frac{749}{38}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+y=64,0.12x-0.26y=0.19
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\0.19\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right))\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.26}{-0.26-0.12}&-\frac{1}{-0.26-0.12}\\-\frac{0.12}{-0.26-0.12}&\frac{1}{-0.26-0.12}\end{matrix}\right)\left(\begin{matrix}64\\0.19\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&\frac{50}{19}\\\frac{6}{19}&-\frac{50}{19}\end{matrix}\right)\left(\begin{matrix}64\\0.19\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64+\frac{50}{19}\times 0.19\\\frac{6}{19}\times 64-\frac{50}{19}\times 0.19\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1683}{38}\\\frac{749}{38}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{1683}{38},y=\frac{749}{38}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+y=64,0.12x-0.26y=0.19
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
0.12x+0.12y=0.12\times 64,0.12x-0.26y=0.19
x અને \frac{3x}{25} ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 0.12 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
0.12x+0.12y=7.68,0.12x-0.26y=0.19
સરળ બનાવો.
0.12x-0.12x+0.12y+0.26y=7.68-0.19
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 0.12x+0.12y=7.68માંથી 0.12x-0.26y=0.19 ને ઘટાડો.
0.12y+0.26y=7.68-0.19
-\frac{3x}{25} માં \frac{3x}{25} ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો \frac{3x}{25} અને -\frac{3x}{25} ને વિભાજિત કરો.
0.38y=7.68-0.19
\frac{13y}{50} માં \frac{3y}{25} ઍડ કરો.
0.38y=7.49
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -0.19 માં 7.68 ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
y=\frac{749}{38}
સમીકરણની બન્ને બાજુનો 0.38 થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
0.12x-0.26\times \frac{749}{38}=0.19
0.12x-0.26y=0.19માં y માટે \frac{749}{38} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
0.12x-\frac{9737}{1900}=0.19
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -0.26 નો \frac{749}{38} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
0.12x=\frac{5049}{950}
સમીકરણની બન્ને બાજુ \frac{9737}{1900} ઍડ કરો.
x=\frac{1683}{38}
સમીકરણની બન્ને બાજુનો 0.12 થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{1683}{38},y=\frac{749}{38}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.